• Title/Summary/Keyword: gyro-accelerometer

Search Result 92, Processing Time 0.032 seconds

Performance Improvement of Attitude Estimation Using Modified Euler Angle Based Kalman Filter (변형된 오일러각 기반의 칼만필터를 이용한 자세 추정 성능 향상)

  • Kang, Chul-Woo;Yoo, Young-Min;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.881-885
    • /
    • 2008
  • To calculate the attitude in ARS(Attitude Reference System) using 3 gyros and 3 accelerometers, gyro drift must be compensated with accelerometer to avoid divergence of attitude error. Kalman filter is most popular method to integrate those two sensor outputs. In this paper, new Kalman filtering method is proposed for roll and pitch attitude estimation. New states are defined to make linear equation and algorithm for changing Kalman filter parameters is proposed to ignore disturbances of acceleration. This algorithm can be easily applied to low cost ARS.

Development of a Musculoskeletal Load Measuring Device for Construction Workers Based on Accelerometers and Gyro Sensors

  • Kim, Kyoon-Tai
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.618-626
    • /
    • 2011
  • The characteristics of construction work cause excessive strain on specific body parts of the construction craft workers. However, there are few tools to mane an accurate measurement of the load on the musculoskeletal system, and the musculoskeletal disorders (MSDs) experienced by the workers have not been properly understood. So, there is an urgent need for development of a tool to measure the load on the musculoskeletal system. Therefore, this research aims to develop a musculoskeletal load measuring device for construction workers. In order to eliminate the noise and errors, an accelerometer, gyro sensors and the Kalman Filter are used in the device developed in this research.

Tilt Angle Estimation of Plane with a Pair of Accelerometers and a Gyroscope (가속도계와 자이로스코프를 이용한 평면의 경사각 추정)

  • Kang, Min Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.966-972
    • /
    • 2013
  • Measurement or estimation of tilt angle is necessary for balancing robot such as Segway which is considered as a next generation transportation vehicle. However, it requires high-cost accurate sensors to hold balancing during stationary and moving situations. In this paper, a tilt angle estimation of a plane rotating in a vertical plane using low-cost sensors. Estimation using a set of 2-axis orthogonal accelerometers along with an inaccurate rate gyro has been considered. Feasibility and performance of the proposed technique has been verified through some experimental results.

Development of Horizontal Attitude Monitoring System for Agricultural Robots (농업 로봇 용 수평 자세 모니터링 시스템 개발)

  • Kim, Sung Deuk;Kim, Cheong Worl;Kwon, Ik Hyun;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.87-91
    • /
    • 2019
  • In this paper, we have development of horizontal attitude monitoring system for agricultural robots. A two-axis gyro sensor and a two-axis accelerometer sensor are used to measure the horizontal attitude angle. The roll angle and pitch angle were measured through the fusion of the gyro sensor signal and the acceleration sensor signal for the horizontal attitude monitoring of the robot. This attitude monitoring system includes GPS and Bluetooth communication module for remote monitoring. The roll angle and pitch angle can be measured by the error of less than 1 degree and the linearity and the reproducibility of the output signal are excellent.

A Simultaneous Experimental Disturbances Identification of Gyro Stabilized 2-Axes Gimbal System for Disturbance Feedforward Compensation Control (2-축 자이로 안정화 김발 시스템의 외란보상 앞먹임 제어를 위한 실험적 2-축 외란 동시 식별)

  • Yeo, Sung Min;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.508-519
    • /
    • 2018
  • This paper concerns on stabilization control of a gyro-stabilized 2-axes gimbal system which is mounted on a moving vehicles such as automobiles, armored vehicles, ships, flying vehicles, etc. A target image acquisition system is attached on the inner gimbal, and the gimbal systems are required to retain high stabilization accuracy in the absolute coordinate in order to provide fine target image while vehicle is moving. The stabilization control performance is hardly depended upon disturbance rejection ability of control, and disturbance feedforward compensation is effective because feedforward compensation reduce the amount of disturbance before the disturbance disturbs the systems. This paper suggests an experimental method which can estimate system parameters and disturbance torques by using 3-axes accelerometer mounted on the inner gimbal. Furthermore, a simple disturbance identification method which can be applied to any slanted base conditions has been suggested to identify mass unbalance vector and friction torques of each gimbal simultaneously. By using the estimated parameters, a feedforward compensation has been applied to the gyro-stabilized 2-axes gimbal system. The experimental results showed that the feedforward compensation based on the identification method suggested is effective to improve stabilization performances.

The RLG's Power Supply Design for Attitude Control in the Satellite (저궤도 위성 자세제어용 센서 RLG 전원 공급기 설계)

  • Kim, Eui-Chan;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1488-1490
    • /
    • 2008
  • The gyroscope is the sensor for detecting the rotation in inertial reference frame and constitute the navigation system together an accelerometer. As the inertial reference equipment for attitude determination and control in the satellite, the mechanical gyroscope has been used but it bring the disturbance for mass unbalance so the disturbance give a bad influence to the observation satellite mission because the mechanical gyroscope has the rotation parts. During the launch, The mechanical gyroscope is weak in vibration, shock and has the defect of narrow operating temperature range so it need the special design in integration. Recently the low orbit observation satellite for seeking the high pointing accuracy of image camera payload accept the FOG(Fiber Optic Gyro) or RLG(Ring Laser Gyro) for the attitude determination and control. The Ring Laser Gyro makes use of the Sanac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. It need the 1000V DC to create the He-Ne plasma in discharge tube. In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design and voltage doubler circuit.

  • PDF

A Study On Design & Implementation of An Attitude Control System of a Lot of Legs Robots (다족형 로봇의 자세 제어 시스템 설계 및 구현에 관한 연구)

  • Nam, Sang-Yep;Hong, Sung-Ho;Kim, Suk-Joong
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.11-18
    • /
    • 2008
  • This study is implementation of attitude control system(ACS - Attitude Control System). for a multi legs robot. This study designs H/W of Inertial Measurement Unit (IMU) and attitude control algorithm S/W. Compare performance with Mtx and MTx in order to verify action performance of this system after implementation, and will verify a system integrated IMU of a multi-legs robot. ACS uses Gyro and an accelerometer and an earth magnetism sensor, and it is a system controlling a roll, pitch angle attitude of an object. Generally, low price MEMS is difficult to calculate a correct situation of an object as an error occurs severely the Inertial sensor. This study implements IMU in order to develop ACS as use MEMS, accelerometer, Gyro sensor and earth magnetism sensor. Design algorithm each a roll, pitch, yaw attitude guaranteeing regular performance, and do poling in a system as include an attitude calculation program in an IMU system implemented. Mixed output of Gyro and an accelerometer, and recompensed a roll, pitch angle, and loaded in this study on a target platform in order to implement the ACS which guaranteed performance more than a continuously regular level, and operated by real time, and did porting, and verified.

The design of the Fall detection algorithm using the smartphone accelerometer sensor

  • Lee, Daepyo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.54-62
    • /
    • 2017
  • Currently, falling to industrial field workers is causing serious injuries. Therefore, many researchers are actively studying the fall by using acceleration sensor, gyro sensor, pressure sensor and image information.Also, as the spread of smartphones becomes common, techniques for determining the fall by using an acceleration sensor built in a smartphone are being studied. The proposed method has complexity due to fusion of various sensor data and it is still insufficient to develop practical application. Therefore, in this paper, we use acceleration sensor module built in smartphone to collect acceleration data, propose a simple falling algorithm based on accelerometer sensor data after normalization and preprocessing, and implement an Android based app.

Attitude Compensation of Low-cost IMU Using Single Antenna GPS and Accelerometers (단일 안테나 GPS와 가속도계를 이용한 저급 IMU의 자세 보정)

  • Cho, Sung-Yoon;Moon, Sung-Jae;Jin, Yong;Park, Chan-Guk;Ji, Kyu-In;Lee, Young-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.91-91
    • /
    • 2000
  • In this paper, the error compensation method of the attitude reference system with low-cost IMU is proposed. In general, the attitude error calculated by gyro grows with time. Therefore the additional information is required to compensate the drift. The attitude angles can be bound by accelerometer mixing algorithm and the heading angle can be aided by GPS velocity information. The Kalman filter is used for error compensation. The result is verified by comparing with the attitude calculated by medium-grade IMU, LP-81.

  • PDF

An overlapping decomposed filter for INS initial alignment (관성항법장치의 초기정렬을 위한 중복 분해 필터)

  • 박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.136-141
    • /
    • 1991
  • An Overlapping Decomposed Filter(ODF) accomplishing an initial alignment of an INS is proposed in this paper. The proposed filter improves the observable condition and reduces the filtering computation time. Its good performance has been verified by simulation. Completely observable and controllable conditions of INS error model derived from psi-angle approach are introduced under varying sensor characteristics vary. The east components of gyro and accelerometer have to be the first order markov process and the rest of them are the characteristics of the random walk or first order markov process.

  • PDF