• 제목/요약/키워드: gut

검색결과 1,135건 처리시간 0.032초

The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model

  • Seung Min Jeong;Eun-Ju Jin;Shibo Wei;Ju-Hyeon Bae;Yosep Ji;Yunju Jo;Jee-Heon Jeong;Se Jin Im;Dongryeol Ryu
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.404-409
    • /
    • 2023
  • This study investigates the relationship between cancer cachexia and the gut microbiota, focusing on the influence of cancer on microbial composition. Lewis lung cancer cell allografts were used to induce cachexia in mice, and body and muscle weight changes were monitored. Fecal samples were collected for targeted metabolomic analysis for short chain fatty acids and microbiome analysis. The cachexia group exhibited lower alpha diversity and distinct beta diversity in gut microbiota, compared to the control group. Differential abundance analysis revealed higher Bifidobacterium and Romboutsia, but lower Streptococcus abundance in the cachexia group. Additionally, lower proportions of acetate and butyrate were observed in the cachexia group. The study observed that the impact of cancer cachexia on gut microbiota and their generated metabolites was significant, indicating a host-to-gut microbiota axis.

Association between Mild Cognitive Impairment and Gut Microbiota in Elderly Korean Patients

  • Eun-Ju Kim;Jae-Seong Kim;Seong-Eun Park;Seung-Ho Seo;Kwang-Moon Cho;Sun Jae Kwon;Mee-Hyun Lee;Jae-Hong Kim;Hong-Seok Son
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1376-1383
    • /
    • 2023
  • Recent studies have confirmed that gut microbiota differs according to race or country in many diseases, including mild cognitive impairment (MCI) and Alzheimer's disease. However, no study has analyzed the characteristics of Korean MCI patients. This study was performed to observe the association between gut microbiota and MCI in the Korean elderly and to identify potential markers for Korean MCI patients. For this purpose, we collected fecal samples from Korean subjects who were divided into an MCI group (n = 40) and control group (n = 40) for 16S rRNA gene amplicon sequencing. Although no significant difference was observed in the overall microbial community profile, the relative abundance of several genera, including Bacteroides, Prevotella, and Akkermansia, showed significant differences between the two groups. In addition, the relative abundance of Prevotella was negatively correlated with that of Bacteroides (r = 0.733). This study may provide Korean-specific basic data for comparing the characteristics of the gut microbiota between Korean and non-Korean MCI patients.

The Role of Plasmacytoid Dendritic Cells in Gut Health

  • Hye-Yeon Won;Ju-Young Lee;Dahye Ryu;Hyung-Taek Kim;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • 제19권1호
    • /
    • pp.6.1-6.14
    • /
    • 2019
  • Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.

서울굿을 중심으로 본 무형문화재 전수교육 학습 방법의 의미 (The Meaning of Learning Methods for Education to Transmit Intangible Cultural Heritages Seen with Seoul-gut)

  • 홍태한
    • 공연문화연구
    • /
    • 제36호
    • /
    • pp.505-530
    • /
    • 2018
  • 이 논문은 서울굿을 중심으로 무형문화재 지정 종목 전수교육 학습 방법의 의미를 살핀 글이다. 최근 무형문화재 보전 및 진흥에 관한 법률이 공포되면서 '원형'을 대신하여 '전형'이 전승의 중요한 축으로 떠올랐다. 전형의 개념에 대해 학자들 간에 논란이 벌어지는 것은 사실이지만, 고정된 틀을 지켜야 하는 원형 중심에서 벗어나 전승자에 따라 자유로운 변개가 어느 정도 가능하게 된 것이다. 하지만 무형문화재로 지정된 종목 중 무당굿의 전수교육 학습 방법을 살펴보니 오히려 원형을 강조하거나 학습의 중점에 두고 있다. 국가 무형문화재 황해도평산소놀음굿, 서울틀별시 무형문화재 남이장군사당굿, 봉화산도당굿 등의 학습 방법을 예로 들어 이러한 실상을 제시했다. 최근 무당굿을 전수하는 학원식 교육이 널리 퍼지고 있는 현실 속에서 무형문화재로 인정된 여러 종목들은 무형문화재 지정을 앞세우면서 신문에 무당굿 학습을 알리는 광고성 기사를 제시하고 있다. 그리고 이러한 광고에 호응하여 무형문화재 지정 종목 보존회에 와서 무당굿을 학습하려는 무속인도 증가하고 있다. 이들은 자유로운 무당굿 연행은 가능하지만, 고정되고 분명한 무당굿의 체계가 없어 이를 배우러 오는 것이다. 전형 개념이 들어왔지만, 무당굿의 무형문화재 종목에서 실시하는 원형 중심의 학습을 통해 고정된 틀의 학습이 가능하게 되면서 이를 찾는 무속인들이 증가하고 있는 것이다. 원형의 전승이 굿의 생동력을 떨어트리면서, 오히려 기본적인 틀의 학습이 가능한 곳이라는 인식, 구체적인 무속 지식을 배울 수 있다는 인식을 주어 여러 무속인들이 굿 학습을 위해 찾고 있다. 따라서 무형문화재 지정 종목 무당굿에서는 이러한 변화상을 수용하여 새로운 무형문화재 전수교육 방식을 개발하여야 한다.

장내 마이크로바이옴과 차세대 프로바이오틱스 연구 현황 (Recent advances on next-generation probiotics linked to the gut microbiome)

  • 최학종
    • 식품과학과 산업
    • /
    • 제52권3호
    • /
    • pp.261-271
    • /
    • 2019
  • NGS 기술이 발전함에 따라 우리 몸의 생리와 면역조절에 있어서 장내미생물의 중요성이 알려지면서부터 장내미생물군집의 구조를 직접 조절할 수 있는 프로바이오틱스의 중요성 역시 재조명 받고 있다. 인류는 프로바이오틱스를 오랫동안 발효식품 등을 통하여 섭취하였는데, 프로바이오틱스는 식품의 보존성 및 영양성을 높일 뿐 아니라 인체의 건강에 이로운 역할을 한다. 특히 프로바이오틱스의 섭취는 생체 내에서 Treg의 기능을 활성화하여 장내 환경을 개선시켜 유익한 장내미생물의 생육을 도우며, 염증반응, 알러지질환, 자가면역질환 등을 완화시키는 효과가 있다. 특히 프로바이오틱스는 장내 유익균인 Bifidobacterium, Faecalibacterium, Akkermansia 및 Bacteroides 속 미생물의 빈도를 증가시키고, 이들은 단쇄지방산 및 신체에 이로운 대사체 등을 생산한다. 지금까지 프로바이오틱스는 대부분 건강기능식품으로 사용되어 왔으나, 최근 들어 장내 유익균에 대한 기능성이 알려지면서 기존 프로바이오틱스를 포함한 장내 미생물을 이용한 NGPs 개발이 활발히 진행되고 있다. 하지만 NGPs 개발에는 여전히 한계가 존재한다. 아직까지 장내 미생물의 분리, 동정은 일반 세균 배양에 비해 매우 까다롭고, 특별한 배양 기술이 필요하므로 현재까지 NGPs로 활용될 수 있는 장내 미생물은 매우 제한적이다. 또한 기존 프로바이오틱스와는 다르게 NGPs는 의약품처럼 전임상, 독성시험, 약물역학, 3단계의 임상시험을 거쳐야 한다. 하지만 기존 프로바이오틱스의 질병 개선 효과를 뛰어넘어 고형암, 대사질환 및 면역질환의 차세대 치료제로서의 활용 가능성이 매우 높기 때문에 앞으로 더 폭넓은 연구가 진행되어야 할 것이다.

Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma

  • Sohn, Kyoung-Hee;Baek, Min-gyung;Choi, Sung-Mi;Bae, Boram;Kim, Ruth Yuldam;Kim, Young-Chan;Kim, Hye-Young;Yi, Hana;Kang, Hye-Ryun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1819-1826
    • /
    • 2020
  • Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13-overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.

Effect of Lactobacillus rhamnosus hsryfm 1301 on the Gut Microbiota and Lipid Metabolism in Rats Fed a High-Fat Diet

  • Chen, Dawei;Yang, Zhenquan;Chen, Xia;Huang, Yujun;Yin, Boxing;Guo, Feixiang;Zhao, Haiqing;Huang, Jiadi;Wu, Yun;Gu, Ruixia
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.687-695
    • /
    • 2015
  • Accumulating evidence indicates that lactic acid bacteria could improve host physiology and lipid metabolism. To investigate the effect of the gut microbiota on host lipid metabolism, a hyperlipidemic rat model was established by feeding rats a high-fat diet for 28 days, and the gut microbiota of the rats was analyzed using real-time PCR before and after administration of Lactobacillus rhamnosus hsryfm 1301 and its fermented milk for 28 days. The findings showed that the Lactobacillus spp., Bifidobacterium spp., Bacteroides spp., and Enterococcus spp. content in the hyperlipidemic rats gut was increased significantly (p < 0.05), while the Clostridium leptum and Enterobacter spp. content was decreased significantly after intervening with L. rhamnosus hrsyfm 1301 and its fermented milk for 28 days (p < 0.05). Furthermore, the lipid levels of the serum and the liver were decreased significantly (p < 0.05) and the fecal water content was increased significantly (p < 0.05) in the hyperlipidemic rats after the intervention, and hepatocyte fatty degeneration of liver tissues was also prevented. A positive correlation was observed between the Clostridium leptum content and the level of serum cholesterol, triglycerides, low-density lipoprotein, and high-density lipoprotein, and a negative correlation was observed between the Enterobacter spp. content and the Lactobacillus spp. and Bifidobacterium spp. content in the hyperlipidemic rats gut. These results suggest that the gut microbiota and lipid metabolism of hyperlipidemic rats could be improved by supplementation with L. rhamnosus hsryfm 1301 and its fermented milk.

Comparison of Fecal Microbial Communities between White and Black Pigs

  • Guevarra, Robin B.;Kim, Jungman;Nguyen, Son G.;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • 제58권4호
    • /
    • pp.369-375
    • /
    • 2015
  • Meat from black pigs (BP) is in high demand compared with that from modern white pig (WP) breeds such as Landrace pigs owing to its high quality. However, the growth rate of black pigs is slower than that of white pig breeds. We investigated differences in the fecal microbial composition between white and black pigs to explore whether these breeds differed in the composition of their gut microbial communities. The swine gut microbiota was investigated using Illumina's MiSeq-based sequencing technology by targeting the V4 region of the 16S rRNA gene. Our results showed that the composition of the gut microbiota was significantly different between the two pig breeds. While the composition of the WP microbiota shifted according to the growth stage, fewer shifts in composition were observed for the BP gut microbiota. In addition, the WP gut microbiota showed a higher Firmicutes/Bacteroidetes ratio compared with that of BP. A high ratio between these phyla was previously reported as an obesity-linked microbiota composition. Moreover, the WP microbiota contained a significantly higher abundance of cellulolytic bacteria, suggesting a possibility of higher fiber digestion efficiency in WP compared to BP. These findings may be important factors affecting growth performance and energy-harvesting capacities in pigs. Our findings of differences in the gut microbiota composition between the two breeds may provide new leads to understand growth rate variation across pig breeds.

Anti-Helicobacter pylori Properties of GutGardTM

  • Kim, Jae Min;Zheng, Hong Mei;Lee, Boo Yong;Lee, Woon Kyu;Lee, Don Haeng
    • Preventive Nutrition and Food Science
    • /
    • 제18권2호
    • /
    • pp.104-110
    • /
    • 2013
  • Presence of Helicobacter pylori is associated with an increased risk of developing upper gastrointestinal tract diseases. Antibiotic therapy and a combination of two or three drugs have been widely used to eradicate H. pylori infections. Due to antibiotic resistant drugs, new drug resources are needed such as plants which contain antibacterial compounds. The aim of this study was to investigate the ability of GutGard$^{TM}$ to inhibit H. pylori growth both in Mongolian gerbils and C57BL/6 mouse models. Male Mongolian gerbils were infected with the bacteria by intragastric inoculation ($2{\times}10^9$ CFU/gerbil) 3 times over 5 days and then orally treated once daily 6 times/week for 8 weeks with 15, 30 and 60 mg/kg GutGard$^{TM}$. After the final administration, biopsy samples of the gastric mucosa were assayed for bacterial identification via urease, catalase and ELISA assays as well as immunohistochemistry (IHC). In the Mongolian gerbil model, IHC and ELISA assays revealed that GutGard$^{TM}$ inhibited H. pylori colonization in gastric mucosa in a dose dependent manner. The anti-H. pylori effects of GutGard$^{TM}$ in H. pylori-infected C57BL/6 mice were also examined. We found that treatment with 25 mg/kg GutGard$^{TM}$ significantly reduced H. pylori colonization in mice gastric mucosa. Our results suggest that GutGard$^{TM}$ may be useful as an agent to prevent H. pylori infection.

Effects of Antibiotic Growth Promoter and Characterization of Ecological Succession in Swine Gut Microbiota

  • Unno, Tatsuya;Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.431-438
    • /
    • 2015
  • Ever since the ban on antibiotic growth promoters (AGPs), the livestock death rate has increased owing to pathogenic bacterial infections. There is a need of developing AGP alternatives; however, the mechanisms by which AGP enhances livestock growth performance are not clearly understood. In this study, we fed 3-week-old swine for 9 weeks with and without AGPs containing chlortetracycline, sulfathiazole, and penicillin to investigate the effects of AGPs on swine gut microbiota. Microbial community analysis was done based on bacterial 16S rRNA genes using MiSeq. The use of AGP showed no growth promoting effect, but inhibited the growth of potential pathogens during the early growth stage. Our results showed the significant increase in species richness after the stabilization of gut microbiota during the post-weaning period (4-week-old). Moreover, the swine gut microbiota was divided into four clusters based on the distribution of operational taxonomic units, which was significantly correlated to the swine weight regardless of AGP treatments. Taxonomic abundance analysis indicated a negative correlation between host weight and the abundance of the family Prevotellaceae species, but showed positive correlation to the abundance of the family Spirochaetaceae, Clostridiaceae_1, and Peptostreptococcaeae species. Although no growth performance enhancement was observed, the use of AGP inhibited the potential pathogens in the early growth stage of swine. In addition, our results indicated the ecological succession of swine gut microbiota according to swine weight. Here, we present a characterization of swine gut microbiota with respect to the effects of AGPs on growth performance.