• 제목/요약/키워드: gut

검색결과 1,185건 처리시간 0.023초

Translational gut microbiome research for strategies to improve beef cattle production sustainability and meat quality

  • Yasushi Mizoguchi;Le Luo Guan
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.346-359
    • /
    • 2024
  • Advanced and innovative breeding and management of meat-producing animals are needed to address the global food security and sustainability challenges. Beef production is an important industry for securing animal protein resources in the world and meat quality significantly contributes to the economic values and human needs. Improvement of cattle feed efficiency has become an urgent task as it can lower the environmental burden of methane gas emissions and the reduce the consumption of human edible cereal grains. Cattle depend on their symbiotic microbiome and its activity in the rumen and gut to maintain growth and health. Recent developments in high-throughput omics analysis (metagenome, metatranscriptome, metabolome, metaproteome and so on) have made it possible to comprehensively analyze microbiome, hosts and their interactions and to define their roles in affecting cattle biology. In this review, we focus on the relationships among gut microbiome and beef meat quality, feed efficiency, methane emission as well as host genetics in beef cattle, aiming to determine the current knowledge gaps for the development of the strategies to improve the sustainability of beef production.

Advances in Culturomics Research on the Human Gut Microbiome: Optimizing Medium Composition and Culture Techniques for Enhanced Microbial Discovery

  • Hye Seon Song;Yeon Bee Kim;Joon Yong Kim;Seong Woon Roh;Tae Woong Whon
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.757-764
    • /
    • 2024
  • Despite considerable advancements achieved using next-generation sequencing technologies in exploring microbial diversity, several species of the gut microbiome remain unknown. In this transformative era, culturomics has risen to prominence as a pivotal approach in unveiling realms of microbial diversity that were previously deemed inaccessible. Utilizing innovative strategies to optimize growth and culture medium composition, scientists have successfully cultured hard-tocultivate microbes. This progress has fostered the discovery and understanding of elusive microbial entities, highlighting their essential role in human health and disease paradigms. In this review, we emphasize the importance of culturomics research on the gut microbiome and provide new theories and insights for expanding microbial diversity via the optimization of cultivation conditions.

Host-Microbe Interactions Regulate Intestinal Stem Cells and Tissue Turnover in Drosophila

  • Ji-Hoon Lee
    • International Journal of Stem Cells
    • /
    • 제17권1호
    • /
    • pp.51-58
    • /
    • 2024
  • With the activity of intestinal stem cells and continuous turnover, the gut epithelium is one of the most dynamic tissues in animals. Due to its simple yet conserved tissue structure and enteric cell composition as well as advanced genetic and histologic techniques, Drosophila serves as a valuable model system for investigating the regulation of intestinal stem cells. The Drosophila gut epithelium is in constant contact with indigenous microbiota and encounters externally introduced "non-self" substances, including foodborne pathogens. Therefore, in addition to its role in digestion and nutrient absorption, another essential function of the gut epithelium is to control the expansion of microbes while maintaining its structural integrity, necessitating a tissue turnover process involving intestinal stem cell activity. As a result, the microbiome and pathogens serve as important factors in regulating intestinal tissue turnover. In this manuscript, I discuss crucial discoveries revealing the interaction between gut microbes and the host's innate immune system, closely associated with the regulation of intestinal stem cell proliferation and differentiation, ultimately contributing to epithelial homeostasis.

Expression of Cell Proliferation-Related PCNA and E2F Genes in Drosophila Gut and Inhibitory Effect of Nitric Oxide

  • Choi, Na-Hyun;Kim, Young-Shin;Hwang, Mi-Sun;Nam, Hyuck-Jin;Kim, Nam-Deuk;Chung, Hae-Young;Yoo, Mi-Ae
    • Animal cells and systems
    • /
    • 제5권1호
    • /
    • pp.59-64
    • /
    • 2001
  • To understand the late gut development and differentiation, identification and characterization of target genes of homeotic genes involved in gut development are required. We have previously reported that homeodomain proteins can regulate expression of the cell proliferation-related genes. We investigated here the expression of the Drosophila proliferating cell nuclear antigen(PCNA) and E2F(dE2F) genes in larval and adult guts using transgenic flies bearing lacz reporter genes. Both PCNA and dE2F genes were expressed strongly in whole regions of the larval and adult guts including the esophagus, proventriculus, midgut and hindgut, showing higher expression in foregut and hindgut imaginal rings of larva. Nitric Oxide(NO) has been known to be involved in cell proliferation and tumor growth and also to have an antiproliferative activity. Therefore, we also investigated effects of NO on the expression of PCNA and dE2F genes in gut through analyses of lacz reporter expression level in the SNP (NO donor)-treated larval guts. Expressions of both PCNA and dE2F were greatly declined by SNP. The inhibitory effect of NO was shown in whole regions of the gut, especially in hindgut, while the internal region of proventriculus, esophagus, foregut imaginal ring and hindgut imaginal ring was resistant. Our results suggest that this inhibitory effect may be related with the antiproliferative activity of NO.

  • PDF

Insoluble Dietary Fiber from Pear Pomace Can Prevent High-Fat Diet-Induced Obesity in Rats Mainly by Improving the Structure of the Gut Microbiota

  • Chang, Shimin;Cui, Xingtian;Guo, Mingzhang;Tian, Yiling;Xu, Wentao;Huang, Kunlun;Zhang, Yuxing
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.856-867
    • /
    • 2017
  • Supplement of dietary fibers (DF) is regarded as one of the most effective way to prevent and relieve chronic diseases caused by long-term intake of a high-fat diet in the current society. The health benefits of soluble dietary fibers (SDF) have been widely researched and applied, whereas the insoluble dietary fibers (IDF), which represent a higher proportion in plant food, were mistakenly thought to have effects only in fecal bulking. In this article, we proved the anti-obesity and glucose homeostasis improvement effects of IDF from pear pomace at first, and then the mechanisms responsible for these effects were analyzed. The preliminary study by real-time PCR and ELISA showed that this kind of IDF caused more changes in the gut microbiota compared with in satiety hormone or in hepatic metabolism. Further analysis of the gut microbiota by high-throughput amplicon sequencing showed IDF from pear pomace obviously improved the structure of the gut microbiota. Specifically, it promoted the growth of Bacteroidetes and inhibited the growth of Firmicutes. These results are coincident with previous hypothesis that the ratio of Bacteroidetes/Firmicutes is negatively related with obesity. In conclusion, our results demonstrated IDF from pear pomace could prevent high-fat diet-induced obesity in rats mainly by improving the structure of the gut microbiota.

Stress, Nutrition, and Intestinal Immune Responses in Pigs - A Review

  • Lee, In Kyu;Kye, Yoon Chul;Kim, Girak;Kim, Han Wool;Gu, Min Jeong;Umboh, Johnny;Maaruf, Kartini;Kim, Sung Woo;Yun, Cheol-Heui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권8호
    • /
    • pp.1075-1082
    • /
    • 2016
  • Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature), nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC) and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.

Effects of the Antibiotics Growth Promoter Tylosin on Swine Gut Microbiota

  • Kim, Jungman;Guevarra, Robin B.;Nguyen, Son G.;Lee, Ji-Hoon;Jeong, Dong Kee;Unno, Tatsuya
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권5호
    • /
    • pp.876-882
    • /
    • 2016
  • Tylosin has been used as a livestock feed additive and antibiotic growth promoter for many years. However, the mode of action by which tylosin enhances animal growth is unclear. We used high-throughput sequencing of 16S rRNA genes to investigate the effects of tylosin as a feed additive on swine gut microbiota. No significant difference in the rate of weight increase was observed between control and tylosin-treated pigs during a 10-week feeding trial. However, tylosin-treated pigs showed rapid increases in the relative abundance of the phylum Firmicutes. Increases in Firmicutes species are associated with (so-called) obese-type gut microbiota. The abundance of species of four families of the phylum Firmicutes (Streptococcaceae, Peptococcaceae, Peptostreptococcaceae, and Clostridiaceae) correlated positively with host weight gain. The abundance of Streptococcaceae family bacteria was least affected by tylosin treatment. Distribution analysis of operational taxonomic units (OTUs) showed that both control and tylosin-treated pigs exhibited similar OTU alterations during growth. However, the tylosin-treated group showed distinctive alterations in gut microbiota when the host weighed approximately 60 kg, whereas similar alterations occurred at around 80 kg in the control group. Our results suggest that use of tylosin accelerates maturation of swine gut microbiota rather than altering its composition.

Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity

  • Jung, Dong-Hyun;Kim, Ga-Young;Kim, In-Young;Seo, Dong-Ho;Nam, Young-Do;Kang, Hee;Song, Youngju;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1904-1915
    • /
    • 2019
  • Resistant starch (RS) is metabolized by gut microbiota and involved in the production of short-chain fatty acids, which are related to a variety of physiological and health effects. Therefore, the availability of RS as a prebiotic is a topic of interest, and research on gut bacteria that can decompose RS is also important. The objectives in this study were 1) to isolate a human gut bacterium having strong degradation activity on non-gelatinized RS, 2) to characterize its RS-degrading characteristics, and 3) to investigate its probiotic effects, including a growth stimulation effect on other gut bacteria and an immunomodulatory effect. Bifidobacterium adolescentis P2P3 showing very strong RS granule utilization activity was isolated. It can attach to RS granules and form them into clusters. It also utilizes high-amylose corn starch granules up to 63.3%, and efficiently decomposes other various types of commercial RS without gelatinization. In a coculture experiment, Bacteroides thetaiotaomicron ATCC 29148, isolated from human feces, was able to grow using carbon sources generated from RS granules by B. adolescentis P2P3. In addition, B. adolescentis P2P3 demonstrated the ability to stimulate secretion of Th1 type cytokines from mouse macrophages in vitro that was not shown in other B. adolescentis. These results suggested that B. adolescentis P2P3 is a useful probiotic candidate, having immunomodulatory activity as well as the ability to feed other gut bacteria using RS as a prebiotic.

Influence of Supplemental Enzymes, Yeast Culture and Effective Micro-organism Culture on Gut Micro-flora and Nutrient Digestion at Different Parts of the Rabbit Digestive Tract

  • Samarasinghe, K.;Shanmuganathan, T.;Silva, K.F.S.T.;Wenk, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권6호
    • /
    • pp.830-835
    • /
    • 2004
  • An experiment of 10 weeks duration was carried out to study the influence of supplemental effective microorganism (EM) culture, yeast culture and enzymes on nutrient digestibility and gut microflora in rabbit gastrointestinal (GI) tract. Twenty four eight to nine weeks old, New Zealand White rabbits were allotted to four dietary treatments; a basal (control) feed, basal feed supplemented with either EM (1%), yeast culture or enzymes (400 ppm). Nutrient flow in digesta and their digestibility at ileum, caecum, colon and in the total tract as well as gut microflora distribution were studied. Feed dry matter was diluted from 92% to about 14% up to the ileum and about 95% of this water was reabsorbed by the colonic rectal segment followed by caecum (25%). EM and yeast improved protein digestibility at a lower rate than enzymes. Ileal, caecal, colonic and total tract digestibility of crude protein with enzymes were higher by 10.8, 9.4, 11.3 and 10.7%, respectively, as compared to the control. Yeast and enzymes increased crude fiber digestibility at ileum, caecum, colon and in the total tract by 8.5, 9.6, 9.0 and 8.3%, respectively, while EM improved them at a lower rate. Irrespective of treatments, total tract digestibility of crude protein (0.698-0.773) and fiber (0.169-0.183) were greater (p<0.05) than the ileal digestibility. Even though a post-caecal protein digestibility was observed, fiber digestion seemed to be completed in the caecum especially with yeast and enzymes. High precaecal digestibility of crude fiber (97%) and protein (95%) were observed even without additives probably due to caecotrophy. EM and yeast culture promoted the growth of lactic acid bacteria especially in the caecum but they did not influence gut yeast and mould. Present findings reveal that even though rabbits digest nutrients efficiently through hind gut fermentation, they can be further enhanced by EM, yeast and enzymes. Of the three additives tested, enzymes found to be the best.