• Title/Summary/Keyword: gummy stem blight

Search Result 15, Processing Time 0.02 seconds

Development of an Efficient Screening System for Resistance of Watermelon Plants to Didymella bryoniae (수박 덩굴마름병에 대한 효율적인 저항성 검정 방법 개발)

  • Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.72-80
    • /
    • 2016
  • Gummy stem blight, caused by the fungus Didymella bryoniae, is major disease of watermelons worldwide. The objective of the present study was to establish an efficient screening system to identify watermelon resistant to D. bryoniae. An GSB3 isolate was prepared from a watermelon plant showing typical symptoms of gummy stem blight in Haman-gun and identified as D. bryoniae based on molecular analysis of internal transcribed spacer sequence. A simple mass-production technique of inoculum was developed based on spore production of D. bryoniae GSB3 under several incubation conditions and their virulence on watermelon plants. Resistance degrees of 22 commercial watermelon cultivars to the GSB3 isolate were evaluated. Among them, four watermelon cultivars showing different degree of resistance response were selected for further study. Development of disease on the cultivars according to various conditions including inoculum concentrations, incubation periods in dew chamber, and incubation temperatures was investigated. From the results, we suggest an efficient screening method for resistant watermelon cultivars to gummy stem blight. Seeds of watermelon cultivar are sown and grown in a greenhouse until plant stage of 2-fully expanded leaves. Seedlings are inoculated with D. bryoniae by spraying spore suspension of the fungus at a concentration of $5.0{\times}10^5spores/ml$. The infected plants are incubated in humidity chamber at $25^{\circ}C$ for 48 hours and then transferred to a growth chamber at $25^{\circ}C$ and 80% relative humidity with 12-hour light a day. Three to four days after inoculation, disease severity of the plant are measured using percentage of infected leaf area.

Development of HRM Markers Based on SNPs Identified from Next Generation Resequencing of Susceptible and Resistant Parents to Gummy Stem Blight in Watermelon (수박에서 덩굴마름병 감수성 및 저항성 양친에 대한 차세대 염기서열 재분석으로 탐색된 SNP 기반 HRM 분자표지 개발)

  • Lee, Eun Su;Kim, Jinhee;Hong, Jong Pil;Kim, Do-Sun;Kim, Minkyong;Huh, Yun-Chan;Back, Chang-Gi;Lee, Jundae;Lee, Hye-Eun
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.424-433
    • /
    • 2018
  • Watermelon (Citrullus lanatus) is an economically important vegetable crop all over the world, which has functional compounds such as lycopene and citrulline. Gummy stem blight caused by Didymella bryoniae is one of the most devastative diseases in watermelon. Single nucleotide polymorphisms (SNPs), which are genetic variations occurring between individuals with respect to a single base, were often used to construct genetic linkage maps and develop molecular markers linked to a variety of horticultural traits and resistance to several diseases. In this study, we developed high-resolution melting (HRM) markers based on SNPs generated from NGS resequencing of two parents in watermelon. Plant materials were C. lanatus '920533' (female and susceptible parent), C. amarus 'PI 189225' (male and resistant parent), and their $F_1$ and $F_2$ progenies. A total of 13.6 Gbp ('920533') and 13.1 Gbp ('PI 189225') of genomic sequences were obtained using NGS analysis. A total of 6.09 million SNPs between '920533' and 'PI 189225' were detected, and 354,860 SNPs were identified as potential HRM primer sets. From these, a total of 330 primer sets for HRM analysis were designed. As a result, a total of 61 HRM markers that have polymorphic melting curves were developed. These HRM markers can be used for the construction of SNP-based linkage maps and for the analysis of quantitative trait loci (QTLs) related to gummy stem blight resistance.

Development of PCR-Based Sequence Characterized DNA Markers for the Identification and Detection, Genetic Diversity of Didymella bryoniae with Random Amplified polymorphic DNA(RAPD)

  • Kyo, Seo-Il;Shim, Chang-Ki;Kim, Dong-Kil;Baep, Dong-Won;Lee, Seon-Chul;Kim, Hee-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.130-130
    • /
    • 2003
  • Gummy stem blight pathogen is very difficult not only to monitor the inoculum levels prior to host infection, and also it is destructive and hard to control in field condition. We have applied RAPD technique to elucidate the genetic diversity of the genomic DNA of Didymella bryoniae and also to generate specific diagnostic DNA probe useful for identification and detection. The 40 primers produced clear bands consistently from the genomic DNA of twenty isolates of Didymella bryoniae, and two hundred seventy-three amplified fragments were produced with 40 primers. The combined data from 273 bands was analyzed by a cluster analysis using UPGMA method with an arithmetic average program of NTSYS-PC (Version 1.80) to generate a dendrogram. At the distance level of 0.7, two major RAPD groups were differentiated among 20 strains. RAPD group (RG) I included 8 isolates from watermelon except one isolate from melon. RAPD group (RG) IV included 12 isolates from squash, cucumber, watermelon and melon.. In amplification experiment with SCAR specific primer RG1F-RG1R resulted in a single band of 650bp fragment only for 8 isolates out of 20 isolates that should be designated as RAPD Group 1. However, same set of experiment done with RGIIF-RGIIR did not result in any amplified product.. Our attempts to detect intraspecific diversity of ITS region of rDNA by amplifying ITS region and 17s rDNA region for 20 isolates and restriction digestion of amplified fragment with 12 enzymes did not reveal polymorphic band. In order to develop RAPD markers for RGIV specific primer, a candidate PCR fragment( ≒1.4kb) was purified and Southern hybridized to the amplified fragment RGIV isolates. This promising candidate probe recognized only RGIV isolates

  • PDF

Monoclonal Antibody-Based Indirect-ELISA for Early Detection, Diagnosis and Monitoring of Epiphytic Didymella bryoniae in Cucurbits.

  • Lee, Seon-Chul;Shim, Chang-Ki;Kim, Dong-Kil;Bae, Dong-Won;Kyo, Seo-Il;Kim, Hee-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.133.1-133
    • /
    • 2003
  • Gummy stem blight, caused by Didymella bryoniae occurs exclusively on cucurbits. This fungus has been known not to produce its pycnidium in vitro unless irradiated. Through this study, we optimized cultural conditions for mass-production of pycnidiospore by Metal Halide Lamp irradiation. In brief, the mycelial was cultured at $26^{\circ}C$ on PDA, for 2 days under the darkness, and then the plate was illuminated with MH lamp continuously for 3-4 days at $26^{\circ}C$, a great number of pycnidia was simultaneously formed. Thus produced pycnidiospores were used as immunogen. From fusions of myeloma cell (v-653) with splenocytes from immunifed mice were car ried out. And, two hybridoma cell lines that recognized the immunogen Didymella bryoniae were obtained. One Monoclonal Antibody, Db1, recognized the supernatant and the other monoclonal antibody, Db15, recognized the spore. Two clones were selected which were used to produce ascite fluid two MAb Db1 and Db15, were immunotyped and identified as IgG1 and IgG2b, respectively. Titer of MAb Db1 and MAb Db15 was measured absorbance exceeded 0.5 even at a $10^{-5}$ dilution. The MAbs reacted positively with Didymella bryoniae but none reacted with other of fungi and CMV, CGMMV Sensitivity of MAb was precise enough to detect spore concentration as low as $10^{3}$ well by indirect ELISA characterization of the MAb Db1, Db15 antigen by heat and protease treatments show that the epitope recognized by the MAb Bb1, Db15 were a glycoprotein.

  • PDF

Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora Blight on Hot Pepper (점액세균 Myxococcus sp. KYC 1126을 이용한 고추 역병 생물학적 방제 효능)

  • Kim, Sung-Taek;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • Bacteriolytic myxobacteria have been known to secrete various antifungal metabolites against several soilborne phytopathogens including Phytophthora. Among the three isolates of Myxococcus spp., KYC 1126 and KYC 1136 perfectly inhibited the mycelial growth of Phytophtora capsici in vitro. In order to show the biocontrol activity on Phytophthora blight of hot pepper, we tried to find the best way of application of a myxobacterial isolate. Although KYC 1126 fruiting body was easily grown on the colony of Escherichia coli as a nutrient source, it did not control the disease when it was pre-applied in soil. Before the bioassay of a liquid culture filtrate of KYC 1126 was conducted, its antifungal activity was confirmed on the seedlings applying with the mixture of the pathogen's zoospore suspension and KYC 1126 filtrate. On greenhouse experiments with five and four replications, the control value of KYC 1126 on phyllosphere and rhizosphere was 88% and 36%, respectively. Whereas, the control value of dimetnomorph+propineb on phyllosphere was 100% and that of propamorcarb on rhizosphere was 44%. There was a phytotoxicity of the myxobacterial filtrate when seedlings were washed and soaked for 24 hours. Gummy materials were covered with roots. And stem and petiole were constricted, then a whole seedling was eventually blighted.