• Title/Summary/Keyword: guanylate cyclase

Search Result 154, Processing Time 0.021 seconds

A Comparative Study of action Mechanism on the Cerebral Hemodynamics by Cheonghunhwadam-tang and Cheonghunhwadam-tang adding Gastrodiae Rhizoma in Rats (청훈화담탕 및 청훈화담탕가천마에 의한 뇌혈류역학의 작용기전에 대한 비교연구)

  • Jeong Hyun Woo;Lee Geum Soo;Yang Gi Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1127-1133
    • /
    • 2002
  • Cheonghunhwadam-tang(CHT) have been used in oriental medicine for many centuries as a therapeutic agent of vertigo by wind, fire and phlegm. CHTGR was CHT adding Gastrodae Rhizoma. The effects of CHTGR on the regional cerebral blood flow(rCBF) and mean arterial blood pressure(MABP) is not known. A comparative Study of action-mechanism of CHT and CHTGR on the cerebral hemodynamics is not known too. Therefore, purpose of this Study was to investigate effects of CHT and CHTGR on the rCBF and MABP, compare action-mechanism of CHT and CHTGR on the rCBF and MABP. The changes of rCBF and BP was determinated by Laser-Doppler Flowmetry(LDF). The results were as follows ; CHT extract was increased rCBF in a dose-dependent, but was not changed MABP compared with CHT non-treated group. CHTGR extract was decreased rCBF and MABP compared with CHTGR non-treated group in a dose-dependent. Action of CHT is not related with adrenergic β-receptor, cyclooxygenase and guanylate cyclase, but action of CHTGR is related with guanylate cyclase.

The Hyperthermic Effect of Nitric Oxide in Central Nervous System

  • Jung, Jae-Kyung;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.93-98
    • /
    • 2001
  • The precise mechanism of set-point regulation in hypothalamus was not elucidated. Nitric oxide synthases(NOS) were detected in hypothalamus, however, the roles of NO in hypothalamus was not fully studied. So, we tested the effects of NO on body temperature because preoptic-anterior hypothalamus was known as the presumptive primary fever-producing site. NO donor sodium nitroprusside (SNP, 4 nmol, i.c.v.) elicited marked febrile response, and this febrile response was completely blocked by indomethacin (a cyclooxygenase inhibitor). But, ODQ (selective guanylate cyclase inhibitor, $50\;{\mu}g,$ i.c.v.) did not inhibit fever induced by SNP. The cyclic GMP analogue dibutyryl-cGMP $(100\;{\mu}g,\;i.c.v.)$ induced significant pyreses, which is blocked by indomethacin. $N^G-nitro-L-arginine$ methyl ester (L-NAME, non selective NOS inhibitor) inhibited fever induced by $interleukin-1{\beta}\;(IL-1{\bata},\;10\;ng,\;i.c.v.),$ one of endogenous pyrogens. These results indicate that NO may have an important role, not related to stimulation of soluble guanylate cyclase, in the signal pathway of thermoregulation in hypothalamus.

  • PDF

Mechanism of MokhwyangJoki-san Extract on the Regional Cerebral Blood Flow and Mean Arterial Blood Pressure in Normal Rats (목향조기산(木香調氣散) 추출물이 국소 뇌혈류량 및 평균혈압에 미치는 작용기전)

  • Shim, Ik-Hyun;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1538-1542
    • /
    • 2006
  • The study was designed to investigate the effects of MokhwyangJoki-san Extract (MJSE) on the change of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and further to determine the mechanism of MJSE. The results in normal rats were as follows ; MJSE significantly increased rCBF in a dose-dependent manner, and MABP did not change in a dose-dependent manner. This results were suggested that MJSE significantly increased rCBF by dilating pial arterial diameter. The MJSE-induced increase in rCBF was significantly inhibited by pretreatment with methylene blue (10 ${\mu}g/kg$, i.p.), an inhibitor of guanylate cyclase, and was not changed by indomethacin (1 ${\mu}g/kg$, i.p.), an inhibitro of cyclooxygenase. The MJSE-was not changed MABP was decreased by pretreatment with indomethacin but was not changed by methylene blue. This results were suggested that the mechanism of MJSE was mediated by guanylate cyclase.

Calcitonin Gene-related Peptide Suppresses Pacemaker Currents by Nitric Oxide/cGMP-dependent Activation of ATP-sensitive K+ Channels in Cultured Interstitial Cells of Cajal from the Mouse Small Intestine

  • Choi, Seok;Parajuli, Shankar Prasad;Yeum, Cheol Ho;Park, Chan Guk;Kim, Man Yoo;Kim, Young Dae;Cha, Kyoung Hun;Park, Young Bong;Park, Jong Seong;Jeong, Han Seong;Jun, Jae Yeoul
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.181-185
    • /
    • 2008
  • The effects of calcitonin gene-related peptide (CGRP) on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine were investigated using the whole-cell patch clamp technique at $30^{\circ}C$. Under voltage clamping at a holding potential of -70 mV, CGRP decreased the amplitude and frequency of pacemaker currents and activated outward resting currents. These effects were blocked by intracellular $GDP{\beta}S$, a G-protein inhibitor and glibenclamide, a specific ATP-sensitive $K^+$ channels blocker. During current clamping, CGRP hyperpolarized the membrane and this effect was antagonized by glibenclamide. Pretreatment with SQ-22536 (an adenylate cyclase inhibitor) or naproxen (a cyclooxygenase inhibitor) did not block the CGRP-induced effects, whereas pretreatment with ODQ (a guanylate cyclase inhibitor) or L-NAME (an inhibitor of nitric oxide synthase) did. In conclusion, CGRP inhibits pacemaker currents in ICC by generating nitric oxide via G-protein activation and so activating ATP-sensitive $K^+$ channels. Nitric oxide- and guanylate cyclase-dependent pathways are involved in these effects.

Studies on the Mechanical Activities of Rabbit Myometrium V. Effects of Acetylcholine, Oxytocin and Prostagla, din F2α on Cyclic Nucleotide Levels of Rabbit Whole Uterus (가토 척출 자궁근의 운동성에 관한 연구 V. Acetylcholine, PGF2α 및 Oxytocin의 자궁 수축기전에 관한 연구)

  • Lee, Chang-Eop;Kwun, Jong-Kuk;Lee, Joong-Sup;Yang, Il-Suk;Lee, Mun-Han
    • Korean Journal of Veterinary Research
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 1982
  • The effect of acetylcholine, oxytocin and prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$) on cyclic nucleotide levels in estrogen-primed rabbit whole uterus were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiestrase inhibitor, and indomethacin, a prostagandin inhibitor. In the absence of MIX, acetylcholine increased guanosine 3', 5'-cyclic monophosphate (cGMP), but had no effect on adenosine 3', 5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin had no influence on cGMP, but decreased cAMP levels. $PGF_{2{\alpha}}$ increased cGMP and decreased cAMP levels. MIX increased both cAMP and cGMP levels. Oxytocin and $PGF_{2{\alpha}}$ further increased cGMP levels, indicating activation of guanylate cyclase activity. The ratio of cAMP/cGMP was decreased by uterine stinulants both in presence and absence of MIX. Indomethacin elevated cAMP and cGMP revels. The effects of uterine stimulants in the presence of indomethacin on cyclic nucleotide levels were varied from tissue to tisse. In general, oxytocin decreased cGMP and $PGF_{2{\alpha}}$ increased cAMP/cGMP levels, but the effects were statisically nonsignicficant. The cAMP/cGMP ratio was increased by uterine stimulant in the presence of indomethacin. In conclusion, uterine stimulants eased cAMP/cGMP ratio which indicates that the uterine stimulants have opposing effects on adenylate cyclase and guanylate cyclase activities. The endometrium plays a role in the regulation of cyclic nucleotide levels and uterine contraction by means of PG synthesis. Indomethacin has an unknown activities besides both of PG synthetase and phosphodiesterase inhibitions.

  • PDF

Experimental Effects of Sibjeondaebo-tang and Gamy-Sibjeondaebo-tang on Cerebral Hemodynamics in Cerebral Ischemia Rats (십전대보탕(十全大補湯)과 가미십전대보탕(加味十全大補湯)이 뇌허혈 흰쥐의 뇌혈류역학에 미치는 실험적 영향)

  • Lee, Sang Young;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • This Study was designed to investigate the effects of Sibjeondaebo-tang (SDT) and Gamy-Sibjeondaebo-tang (GST, Sibjeondaebo-tang adding Cervi Pantotrichum Cornu) on the improvement in regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and in the rats with cerebral ischemia induced by middle cerebral artery occlusion, and further to determine the mechanisms. And, It was to investigate the effects of the SDT and GST with the change of histologic examination through the BDNF in the hippocampus CA1. In changes of cerebral hemodynamics, SDT and GST significantly increased rCBF in a dose-dependent manner but decreased MABP in normal rats. In mechanism of cerebral hemodynamics, Increase of GST-induced rCBF was significantly inhibited by pretreatment with methylene blue (0.01 mg/kg, i.p.), an inhibitor of guanylate cyclase, and Decrease of GST-induced MABP was significantly increased by pretreatment with methylene. These results suggested that the action of GST was mediated by guantlate cyclase pathway. In cerebral ischemics, the rCBF was stably improved by SDT (10 mg/kg, i.p.) significantly and stably increased by GST (10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrast with the findings of rapid and marked increase in Control group. These results suggested that GST had anti-ischemic action in cerebral ischemic state. In histological examination through TTC stain, Sample A group and Sample B group decreased discoloration in the cortical part at $28^{th}$ day after MCAO induction. In immunohistochemistric response of BDNF, Sample A group and Sample B group increased respondent effect at $28^{th}$ day after MCAO induction. These results suggest that GST can Increase rCBF in normal state, as well as improve the stability of rCBF in cerebral ischemic state. Furthermore, methylene blue inhibitor study suggested the mechanism of blood flow enhancement by GST may be mediated by guanylate cyclase pathway.

The Experimental Study of Sunkihwalhyul-Tang against Inhibitive Effects on the Brain Ischemia (순기활혈탕(順氣活血湯)의 뇌허혈(腦虛血) 억제효과(抑制效果)에 관한 실험적(實驗的) 연구(硏究))

  • Hong, Seok;Ann, Jeong-Jo;Jeong, Sang-Yoon;Choi, Chang-Won;Jeong, Young-Deuk
    • Herbal Formula Science
    • /
    • v.13 no.1
    • /
    • pp.49-69
    • /
    • 2005
  • This Study was designed to investigate the effect of Sunkihwalhyul -Tang extract(SHT) on the change of cerebral hemodynamics [regional cerebral blood flow(rCBF), pial arterial diameter(PAD) and mean arterial blood pressure(MABP)] in normal and cerebral ischemic rats, and further to determine the mechanisms of action of SHT on hemodynamics. In addition, this study was designed to investigate whether SHT inhibits lactate dehydrog enase(LDH) activity in neuronal cells and cytokines production in serum of cerebral ischemic rats. The results were as follows 1. SHT significantly increased rCBF and PAD in a dose-dependent manner, but MABP was not changed by injecting SHT. These results suggest that SHT significantly increases rCBF by dilating PAD. 2. The SHT-induced increase in rCBF was significantly inhibited by pretreatment with indomethacin(IDN, 1 mg/kg, i.p.), an inhibitor of cyclooxygenase and methylene blue(MTB, $10{\mu}g/kg$, i.p.), an inhibitor of guanylate cyclase. 3. The SHT-induced dilation in PAD was significantly inhibited by pretreatment with IDN and MTB. 4. The SHT-induced some increase in MABP was significantly increased by pretreatment with IDN. These results suggest that the mechanism of action of SBT is mediated by guanylate cyclase. 5. Both rCBF and PAD were significantly and stably increased by SHT(10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in control group. 6. SBH significantly inhibited LDH activity in neuronal cells. These results suggest that SHT prevents the neuronal death. 7. In cytokine production in the senlm drawn from femoral artery 1 hr after middlecerebral arterial occlusion, sample group showed significantly decreased production of IL-1$\beta$ production, decreased production TNF-$\alpha$ and increased Production of IL-10 compared with control group. 8. In cytokine production in the serum drawn femoral artery 1 hr after reperfusion, sample group showed significantly decreased production of IL-1$\beta$ and TNF-$\alpha$ as wellas significantly increased production of IL10 compared with control group. These results suggest that SHT mediated by guanylate cyclase has inhibitive effect on the brain damage by inhibiting LDH activity, IL-1$\beta$ and TNF-$\alpha$ production, and by accelerating IL-10 production. The present author thinks that SHT has an anti-ischemic effects through the improvement of cerebral hemodynamics and inhibitive enects on the brain damage.

  • PDF

NO/cGMP Pathway is Involved in Exocrine Secretion from Rat Pancreatic Acinar Cells

  • Ahn, Seong-Hoon;Seo, Dong-Wan;Ko, Young-Kwon;Sung, Kae-Suk;Bae, Gyu-Un;Yoon, Jong-Woo;Hong, Sung-Youl;Han, Jeung-Whan;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.657-663
    • /
    • 1998
  • The enzyme responsible for the synthesis of nitric oxide (NO) from L-arginine in mammalian tissues is known as nitric oxide synthase (NOS) (EC.1.14.13.39). In the present study, the role of NO in the regulation of exocrine secretion was investigated in rat pancreatic acinar cells. Treatment of rat pancreatic acinar cells with cholecystokinin-octapeptide (CCK-OP) resulted in an increase in the arginine conversion to citrulline, the amount of $NO_X$, the release of amylase, and the level of CGMP. Especially, CCK-OP-stimulated increase of arginine to citrulline transformation, the amount of $NO_X$, and CGMP level were completely counteracted by the inhibitor of NOS, NG-monomethyl-L-arginine (MMA), by contrast, that of amylase release was partially reduced. Furthermore, MMA-induced decrease of NOS activity and amylase release showed dose-dependent pattern. The data on the time course of CCK-OP-induced citrulline formation and CGMP rise indicate that NOS and guanylate cyclase were activated by treatment of CCK-OP. However, the mechanism of agonist-stimulated guanylate cyclase activation in acinar cells remains unknown. Therefore, activation of NOS is one of the early events in receptor-mediated cascade of reactions in pancreatic acinar cells and NO, not completely, but partially mediate pancreatic enzyme exocrine secretion.

  • PDF

Effects of Gleditsiae Spina(GS) Extract in Cerebral Blood Flow in Rats (조각자(皂角刺) 추출물(抽出物)이 정상 흰쥐의 뇌혈류(腦血流) 변화(變化)에 미치는 영향(影響))

  • Kim, Nam-Uk;Cho, Gook-Ryung;Lim, Dae-Woong;Shin, Yong-Su;Kim, Jin-Sung;Choi, Jin-Bong;Jeon, Sang-Yun;Hong, Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Objectives : This study was designed to investigate the effects of Gleditsiae spina(GS) on changes in cerebral blood flow in rats. Methods : The present study was investigated regional cerebral blood flow(rCBF) and mean arterial blood pressure(MABP) in rats. In addtion, the present study also investigated action mechanisms of GS on changes in rCBF and MABP by Pre-treatment with indomethacin(IDM) and methylene blue(MTB), an inhibitor of a vasodepressor material. Results : Treatment with GS elevated rCBF in dose-dependent manner, but MABP levels were not affected by treatment with GS. Pre-treatment with indomethacin(IDM), an inhibitor of cyclooxygenase, inhibited increase of rCBF effectively. And pre-treatment with methylene blue(MTB), an inhibitor of guanylate cyclase, inhibited increase of rCBF induced by GS too. In addition, Pre-treatment with MTB inhibited increase of MABP too. But, pre-treatment with IDM did not affect MABP levels. Conclusions : These results suggest that GS is effective to treat patient with disease related to cerebral ischemia, because GS can increase rCBF. In addition, the mechanisms are thought to be related to both of cyclooxygenase and guanylate cyclase pathways.

Modulation of Outward Potassium Currents by Nitric Oxide in Longitudinal Smooth Muscle Cells of Guinea-pig Ileum

  • Kwon, Seong-Chun;Rim, Se-Joong;Kang, Bok-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.225-232
    • /
    • 1998
  • To investigate the possible involvement of outward potassium ($K^+$) currents in nitric oxide-induced relaxation in intestinal smooth muscle, we used whole-cell patch clamp technique in freshly dispersed guinea-pig ileum longitudinal smooth muscle cells. When cells were held at -60 mV and depolarized from -40 mV to -50 mV in 10 mV increments, sustained outward $K^+$ currents were evoked. The outward $K^+$ currents were markedly increased by the addition of 10 ${\mu}M$ sodium nitroprusside (SNP). 10 ${\mu}M$ S-nitroso-N-acetylpenicillamine (SNAP) and 1 mM 8-Bromo-cyclic GMP (8-Br-cGMP) also showed a similar effect to that of SNP. 1 mM tetraethylammonium (TEA) significantly reduced depolarization-activated outward $K^+$ currents. SNP-enhanced outward $K^+$ currents were blocked by the application of TEA. High EGTA containing pipette solution (10 mM) reduced the control currents and also inhibited the SNP-enhanced outward $K^+$ currents. 5 mM 4-aminopyridine (4-AP) significantly reduced the control currents but showed no effect on SNP-enhanced outward $K^+$ currents. 0.3 ${\mu}M$ apamin and 10 ${\mu}M$ glibenclamide showed no effect on SNP-enhanced outward $K^+$ currents. 10 ${\mu}M$ 1H-[1,2,4]oxadiazolo [4,3-a]quinoxaline-1-one (ODQ), a specific inhibitor of soluble guanylate cyclase, significantly blocked SNP-enhanced $K^+$ currents. We conclude that NO donors activate the $Ca^{2+}-activated$ $K^+$ channels in guinea-pig ileal smooth muscle via activation of guanylate cyclase.

  • PDF