• 제목/요약/키워드: guanylate cyclase

검색결과 154건 처리시간 0.024초

사군자탕, 이진탕, 육군자탕이 뇌혈류역학변동에 미치는 실험적 연구 (The Study of Sagunja-tang, Ijin-tang, Yukgunja-tang on the Change of Cerebral Hemodynamics in Rats)

  • 정현우;김희성
    • 동의생리병리학회지
    • /
    • 제18권1호
    • /
    • pp.75-83
    • /
    • 2004
  • This experimental study was designed to investigate the effects of Sagunja-tang(SGJT), Ijin-tang(IJT), Yukgunja-tang(YGJT) on the change of cerebral hemodynamics [regional cerebral blood f1ow(rCBF), mean arterial blood pressure(MABP), and pial arterial diameter (PAD)] in normal rats, and further to determine the mechanism of action of YGJT. And, this Study was designed to investigate whether YGJT inhibit lactate dehydrogenase(LDH) activity in neuronal cells. The results were as follows ; 1. SGJT significantly increased rCBF but MABP was not changed comparing with normal MABP(l00 %). This results were suggested that SGJT significantly increased rCBF by dilating PAD. 2. IJT significantly decreased rCBF in a dose-dependent, but significantly increased MABP in a dose-dependent. This results were suggested that IJT significantly decreased rCBF by contracting PAD. 3. YGJT significantly increased rCBF and PAD in a dose-dependent, and YGJT increased MABP compared with normal MABP(100 %). This results were suggested that YGJT significantly increased rCBF by dilating PAD. 4. The YGJT-induced increase in rCBF was significantly accelerated by pretreatment with indomethacin (IDN, 1 mg/kg, i.p.), an inhibitor of cyclooxygenase but was significantly inhibited by methylene blue (MTB, 10 ㎍/㎏ i.p.), an inhibitor of guanylate cyclase. 5. The YGJT-induced increase in PAD and MABP were accelerated by pretreatment with IDN but was significantly inhibited by MTB. This results suggested that the mechanism of YGJT is mediated by guanylate cyclase. 6. YGJT inhibited significantly LDH activity in neuronal cells. This results were suggested that YGJT prevented the neuronal death. I thought that YGJT should have improvement of cerebral hemodynamics and inhibitive effect on the brain damage.

행간(行間) 자침(刺鍼)이 뇌혈류역학(腦血流力學) 작용(作用) 기전(機轉)에 미치는 실험적(實驗的) 연구(硏究) (Experimental Study of Acupuncture at Haenggan(LR2) on the Cerebral Hemodynamics in Normal Rats)

  • 이윤영;나창수;유충렬;조명래;신정철
    • Korean Journal of Acupuncture
    • /
    • 제20권4호
    • /
    • pp.31-40
    • /
    • 2003
  • Objectives : The purpose of this study is to investigate whether Haenggan(LR2) Reduction in Acupuncture affects cerebral hemodynamics〔regional cerebral blood flow(rCBF), mean arterial blood pressure(MABP)〕in normal rats, and to make manifest whether Haenggan(LR2) Reduction in Acupuncture is mediated by cyclooxygenase or guanylate cyclase. Methods : This experiments was to investigate at the other changes of rCBF and MABP at Haenggan(LR2) Reduction in Acupuncture in normal rats, pretreated rats with indomethacin(1 mg/kg, i.v.) and pretreated rats with methylene blue$(10\;{\,u}g/kg,\;i.v.)$. Results : 1. Haenggan(LR2) Reduction in Acupuncture was significantly increased rCBF during acupuncture and after withdrawing of the needle. 2. Haenggan(LR2) Reduction in Acupuncture was decreased MABP during acupuncture, but Haenggan(LR2) Reduction in Acupuncture was increased MABP in compared with normal condition. 3. Pretreatment with indomethacin(1 mg/kg, i.v.) was significantly inhibited Haenggan(LR2) Reduction in Acupuncture induced increase of rCBF, but was increased Haenggan(LR2) Reduction in Acupuncture induced increase of MABP. 4. Pretreatment with methylene blue$(10\;{\mu}g/kg,\;i.v.)$ was significantly decreased Haenggan(LR2) Reduction in Acupuncture induced increase of rCBF and MABP. This results suggest that Haenggan(LR2) Reduction in Acupuncture increased rCBF by dilating pial arterial diameter, and the mechanism of Haenggan(LR2) Reduction in Acupuncture is mediated by guanylate cyclase.

  • PDF

Calculus Bovis-Fel Uris-Moschus Pharmacopuncture's Effect on Regional Cerebral Blood Flow and Mean Arterial Blood Pressure in Rats

  • Park, Soo-Jung;Lee, Ho-Young;Choi, Na-Rae;Kwon, Young-Mi;Joo, Jong-Cheon
    • 대한약침학회지
    • /
    • 제16권4호
    • /
    • pp.30-35
    • /
    • 2013
  • Objectives: This study was designed to investigate the effects of Calculus Bovis-Fel Uris-Moschus pharmacopuncture (BUM) on the regional cerebral blood flow (rCBF) and the mean arterial blood pressure (MABP) in normal and cerebral ischemic rats and to investigate a possible pathway involved in the effects of BUM. Methods: The changes in the rCBF and the MABP following BUM into Fengfu (GV16) were determined by using a laser-Doppler flow meter and a pressure transducer, respectively. Results: BUM significantly increased the rCBF and decreased the MABP in normal rats in a dose-dependent manner. The effect on the rCBF was significantly inhibited by pretreatment with methylene blue (0.01 mg/kg, intraperitoneal), an inhibitor of guanylate cyclase, but was not affected by pretreatment with indomethacin (1 mg/kg, intraperitoneal), an inhibitor of cyclooxygenase. The BUM-induced decrease of the MABP was changed neither by methylene blue nor by indomethacin pretreatment. In the cerebral ischemic rats, the rCBF was stably increased upon cerebral reperfusion in the BUM group in contrast to the rapid and marked increase in the control group. Conclusion: This study demonstrated that BUM into Fengbu (GV16) increased the rCBF in a dose-dependent manner in the normal state; furthermore, it improved the stability of the rCBF in the ischemic state upon reperfusion. Also, the effects of BUM on the rCBF were attenuated by inhibition of guanylate cyclase, suggesting that the effects involved the guanylate cyclase pathway.

생쥐 췌장의 아밀라아제 분비기작에 관한 연구 (Studies on Amylase Secretion Mechanism by Mouse Pancreatic Fragments.)

  • 조응행;최임순
    • 한국동물학회지
    • /
    • 제30권2호
    • /
    • pp.193-209
    • /
    • 1987
  • Patterns of amylase secretion in mouse pancreatic fragments were studied over a period of time after the tissue was stimulated by acetyicholine and MNNG. MNNG is known to activate guanylate cyclase and thus increase the cGMP concentration in the pancreatic acinar cell. These amylase secretion patterns were studied to investigate the role of cGMP in reaction cascade during secretion response of the tissues stimulated by acetyicholine. Cellular response of amylase secretion in the pancreas by acetyicholine was divided into two phases. During the first phase, zymogen granules which had existed in the cells were secreted by the action of $Ca^2$+ and calmodulin immediately after secretagogue administration, this being known as the initial response. When the tissue was stimulated by acetylcholine in a $Ca^2$+-deficient medium or one containing trifluoperazine as a calmodulin antagonist, this initial response was reduced. In the second phase, newly formed zymogen granules were secreted as sustained response after protein synthesis was triggered by secretagogue. This response was provoked by an activation of protein kinase C. When either cycloheximide as a protein synthesis inhibitor or dibucaine as a protein kinase C inhibitor were added to the incubation medium, this sustained response was remarkablely depressed in the pancreatic fragments stimulated with acetylcholine. In the pancreatic acinar cell, phosphatidylinositol turnover plays an important role in the secretion response and hexachlorocyclohexane inhibits this phosphatidylinositol turnover. The pancreatic tissue treated with the hexachlorocyclohexane exhibited inhibition on both initial and sustained responses of amylase secretion by acetylcholine. MNNG also accelerated amylase secretion from the tissue gradually along incubation time. The 22 minutes fraction of the pancratic secretion after administration of both acetylcholine and MNNG showed higher amylase activity than the neighboring fractions. Guanylate cyclase potentiated the sustained response. Even if it is experimented with an indirect method, guanylate cyclase was found responsible for activation of the sustained response of a step prior to the action of protein kinase C. As conclusion, it was considered that amylase secretion in mouse pancreatic fragments stimulated by acetylcholine is a three phasic response.

  • PDF

지음(至陰)($BL_{67}$).상양(商陽)($LI_1$) 보법(補法) 자침이 백서(白鼠)의 뇌혈류량 및 혈압에 미치는 영향 (Effects of $Zhiyin$($BL_{67}$) and $Shangyang$($LI_1$) Reinforcement in Acupuncture on the Changes of Cerebral Blood Flow and Blood Pressure in Rats)

  • 천혜선;조명래
    • Journal of Acupuncture Research
    • /
    • 제29권2호
    • /
    • pp.73-88
    • /
    • 2012
  • Objectives : The purpose of this study is to research the effects of acupuncturing $BL_{67}$ and $LI_1$ and determine the mechanism of action of acupuncturing $BL_{67}$ and $LI_1$ by measuring the changes of regional cerebral blood flow(rCBF) and mean arterial blood pressure(MABP) in normal rats and ischemic rats. Method : This study researched the effects of acupuncturing $BL_{67}$ and $LI_1$ on the change of rCBF and MABP. To determine the mechanism of action of acupuncturing $BL_{67}$ and $LI_1$, pretreatment with indomethacine and methylene blue was done. Result : 1. Acupuncturing $BL_{67}$ and $LI_1$ significantly increased rCBF and acupuncturing $BL_{67}$ and $LI_1$ induced increase of rCBF was significantly inhibited by pretreatment with indomethacin(1 mg/kg, i.p.), an inhibitor of cyclooxygenase, and methylene blue(10 ${\mu}g$/kg, i.p.), an inhibitor of guanylate cyclase. 2. Acupuncturing $BL_{67}$ and $LI_1$ decreased MABP and there was no significantly change of decrease of MABP on acupuncturing $BL_{67}$ and $LI_1$ by pretreatment with indomethacin and methylene blue. 3. These result suggested that acupuncturing $BL_{67}$ and $LI_1$ might significantly increase rCBF by dilating arterial diameter and mechanism of acupuncturing $BL_{67}$ and $LI_1$ might be mediated by cyclooxygenase and guanylate cyclase. 4. The rCBF was significantly and stably increased by acupuncturing $BL_{67}$ and $LI_1$ during the period of cerebral reperfusion in cerebral ischemic rats, which contrasted with the rapid and marked increase in the control group. Pretreatment with methylene blue significantly decreased rCBF by acupuncturing $BL_{67}$ and $LI_1$ during the period of ischemic state, increased rCBF during the period of cerebral reperfusion. These results suggested that the mechanism of acupuncturing $BL_{67}$ and $LI_1$ might be mediated by guanylate cyclase. Conclusion : Acupuncturing $BL_{67}$ and $LI_1$ can increase rCBF in normal state, and improve stability of rCBF in ischemic state. In addition, we suggested that mechanisms related with acupuncturing $BL_{67}$ and $LI_1$ was more involved in the guanylate cyclase pathway.

Effects of Schisandra chinensis fruit extract and gomisin A on the contractility of penile corpus cavernosum smooth muscle: a potential mechanism through the nitric oxide - cyclic guanosine monophosphate pathway

  • Choi, Bo Ram;Kim, Hye Kyung;Park, Jong Kwan
    • Nutrition Research and Practice
    • /
    • 제12권4호
    • /
    • pp.291-297
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: This study evaluated the effects and molecular mechanisms of the Schisandra chinensis fruit extract (SC) and its major compound gomisin A (GA), on the contractility of rabbit penile corpus cavernosum smooth muscle (PCCSM). MATERIALS/METHODS: PCCSM was exposed to SC or GA after appropriate pretreatment with nitric oxide synthase (NOS) blocker, guanylate cyclase blocker, adenylyl cyclase blocker or protein kinase A blocker. Subsequently, we evaluated the cyclic nucleotide in the perfusate by radioimmunoassay, protein expression level of neuronal NOS (nNOS) and endothelial NOS (eNOS) by western blot, and the interaction of SC or GA with udenafil and rolipram. RESULTS: Both SC and GA induce PCCSM relaxations in a concentration-dependent manner. Pretreatment with NOS blocker, guanylate cyclase blocker, adenylyl cyclase blocker or protein kinase A blocker result in significantly decreased relaxation. SC and GA also induce the levels of cyclic nucleotide in the perfusate in a concentration-dependent manner. Perfusion with GA also showed significantly higher levels of eNOS protein. Furthermore, the udenafil and rolipram induced relaxations of PCCSM were enhanced after exposure to SC and GA. Our results indicate that SC and GA induce the relaxation of PCCSM via the nitric oxide (NO)-cGMP and cAMP signaling pathways. CONCLUSIONS: The SC and GA are potential alternative treatments for men who want to consume natural products to ameliorate erectile function, or who do not respond to the commercially available medicines.

육군자탕(六君子湯)과 죽력(竹瀝) 혼합물이 국소 뇌혈류량 및 평균혈압에 미치는 효과 (Effects of Mixture of Yukgunja-tang and Bambusae Caulis in Liquamen on the Regional Cerebral Blood Flow and Mean Arterial Blood Pressure in Rats)

  • 이석진;정현우
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.54-61
    • /
    • 2007
  • The study was designed to investigate the effects of Mixture of Yukgunja-tang and Bambusae Caulis in Liquamen (YTBCL) on the change of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in rats, and further to determine the mechanism of action of YTBCL. The results in rats were as follows ; YTBCL 25 ${\mu}l$ significantly decreased rCBF and MABP compared with basal condition. YTBCL 100 ${\mu}l$ significantly increased rCBF compared with basal condition, but decreased MABP compared with basal condition. YTBCL 50 ${\mu}l$ significantly increased rCBF compared with basal condition, but MABP was somewhat decreased compared with basal condition. The VTBCL 50 ${\mu}l$-induced increase in rCBF was significantly inhibited by pretreatment with methylene blue (10 ${\mu}g$/kg, i.p.), an inhibitor of guanylate cyclase and indomethacin (1 mg/kg, i.p.), an inhibitor of cyclooxygenase. The YTBCL 50 ${\mu}l$-induced decreased MABP significantly increased by pretreatment with methylene blue but was inhibited by indomethacin. This results were suggested that the mechanism of YTBCL was mediated Dy guanylate cyclase.

유풍양영탕(愈風養營湯)이 정상 흰쥐의 국소 뇌혈류량 및 평균혈압에 미치는 영향(影響) (Effects of Yupoongyangyeong-tang(YYT) on the Changes of Regional Cerebral Blood Flow and Mean Arterial Blood Pressure in Rats)

  • 조국령;안가영;전상윤
    • 대한한방내과학회지
    • /
    • 제30권2호
    • /
    • pp.298-305
    • /
    • 2009
  • Objectives: The present study was carried out to investigate the effects of Yupoongyangyeong-tang(YYT) on changes of regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in rats. In addition, the author also investigated action mechanisms of YYT on changes in rCBF and MABP. Methods and Results : In this study, treatment with YYT elevated rCBF in a dose-dependent manner, but MABP levels were elevated only in the 10 mg/ml treatment group. Pre-treatment with indomethacin. an inhibitor of cyclooxygenase, inhibited increase of rCBF effectively. Pre-treatment with methylene blue, an inhibitor of guanylate cyclase, inhibited increase of rCBF induced by YYT, too. In addition. pre-treatment with indomethacin also inhibited increase of MABP. However, pre-treatment with methylene blue did not affect MABP levels. Conclusion : These results suggest that YYT is useful to treat patients with diseases related to cerebral ischemia, because YYT can increase rCBF. In addition, the mechanisms are thought to be related to both cyclooxygenase and guanylate cyclase.

  • PDF

기허담성치방이 뇌병환에 미치는 기전연구 (The Mechanism Study of Prescription for Treatment Abundant Expectoration due to Deficiency of Qi on Brain Disease in Rats)

  • 이남구;성신
    • 동의생리병리학회지
    • /
    • 제18권4호
    • /
    • pp.1083-1088
    • /
    • 2004
  • This Study was designed to investigate the mechanism of Prescription for Treatment Abundant Expectoration due to Deficiency of Qi(Yukgunja-Tang, YGT) on cerebral hemodynamics [regional cerebral blood f1ow(rCBF) and pial arterial diameter(PAD)] in cerebral ischemia rats. The results were as follows: Both rCBF and PAD were significantly and stably decreased by YGT (10㎎/㎏, i.p.) during the period of cerebral reperfusion, which contrasted with the findings of rapid and marked increase in Control group. Pretreatment with indomethacin(1㎎/㎏, i.p.), an inhibitor of cyclooxygenase and methylene blue(10㎍/㎏, i.p.), an inhibitor of guanylate cyclase significantly but unstably increased the YGT-induced increases in rCBF during the period of cerebral reperfusion. Pretreatment with indomethacin significantly and stably decreased the YGT-induced increases in PAD during the period of cerebral reperfusion, but pretreatment with methylene blue increased unstably the YGT-induced increases in PAD during the period of cerebral reperfusion. In conclusion, the present authors thought that mechanism of YGT on cerebral hemodynamics was connected with guanylate cyclase in cerebral ischemia rats.

Altered Gene Expression in Cerulein-Stimulated Pancreatic Acinar Cells: Pathologic Mechanism of Acute Pancreatitis

  • Yu, Ji-Hoon;Lim, Joo-Weon;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.409-416
    • /
    • 2009
  • Acute pancreatitis is a multifactorial disease associated with the premature activation of digestive enzymes. The genes expressed in pancreatic acinar cells determine the severity of the disease. The present study determined the differentially expressed genes in pancreatic acinar cells treated with cerulein as an in vitro model of acute pancreatitis. Pancreatic acinar AR42J cells were stimulated with $10^{-8}$ M cerulein for 4 h, and genes with altered expression were identified using a cDNA microarray for 4,000 rat genes and validated by real-time PCR. These genes showed a 2.5-fold or higher increase with cerulein: lithostatin, guanylate cyclase, myosin light chain kinase 2, cathepsin C, progestin-induced protein, and pancreatic trypsin 2. Stathin 1 and ribosomal protein S13 showed a 2.5-fold or higher decreases in expression. Real-time PCR analysis showed time-dependent alterations of these genes. Using commercially available antibodies specific for guanylate cyclase, myosin light chain kinase 2, and cathepsin C, a time-dependent increase in these proteins were observed by Western blotting. Thus, disturbances in proliferation, differentiation, cytoskeleton arrangement, enzyme activity, and secretion may be underlying mechanisms of acute pancreatitis.