• Title/Summary/Keyword: growth pH

Search Result 6,244, Processing Time 0.04 seconds

Sedimentation and EPS Production by the Change of Dissolved Oxygen Concentration for the Aeration Tank to treat Wastewater with Bacillus sp. (바실러스 미생물을 이용한 하수처리에서 포기조의 DO농도 변화에 따른 EPS 물질생성과 슬러지 침강성에 관한 연구)

  • Lee, Sang-Ho;Son, Han-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.627-631
    • /
    • 2007
  • The factors affecting on sludge sedimentation are reported as F/M ratio, ingredient, composition of influent substrate, dissolved oxygen concentration, temperature, pH, filamentous bacteria and SRT. Aeration tank applying Bacillus sp. has an important role for maintaining the dominant microorganism species to make steady progress for spore growth affecting sedimentation. This research aims to investigate the affecting factor for the sedimentation in B3 system and RABC system with aeration tank applying tapered aeration. Extracellular polymeric substances(EPS), protein and carbohydrate can be produced for the extreme condition, that is down to 0.2 mg/L of dissolved oxygen in the aeration tank. This research found out the relation between the sedimentation and the EPS production, especially the ratio of protein/carbohydrate. The spore of Bacillus sp. was formed at the low DO then microorganisms produced EPS. The results showed that the production of EPS was 109.95 mgEPS/gSS at 1.6 mg/L of DO, however it was 131.77 mgEPS/gSS at 0.5 mg/L of DO. The sedimentation was affected by protein content in EPS and the ratio of protein and carbohydrate. The settleability of sludge was not affected by the ratio of protein/carbohydrate in B3 process, meanwhile settleability was affected by the ratio of it in RABC process, respectively.

  • PDF

Shelf Life Extension of Steamed Bread by the Addition of Fermented Pine Needle Extract Syrup as an Ingredient (솔잎 발효액의 첨가에 의한 찐빵의 저장성 향상)

  • Choi, Dong-Man;Chung, Sun-Kyung;Lee, Dong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.5
    • /
    • pp.616-621
    • /
    • 2007
  • In order to improve the storage stability of steamed bread, fermented pine needle extract syrup potentially with several functional properties was added in manufacturing the products at levels of 8.3, 11 and 18% based on Brix degree of the dough. The manufactured bread was stored at ambient conditions and measured for quality attributes. Dough added with the fermented pine needle extract syrup maintained its pH and water activity at levels of $5.45{\sim}5.90\;and\;0.94{\sim}0.96$, which are normally suitable for yeast fermentation and for appropriate dough hardness. Addition of the extract syrup increased the bread volume by more than 20%. The bread with higher content of the pine needle extract syrup showed slower increase of bread hardness during storage, suggesting retardation of bread retrogradation. The addition of the pine needle extract syrup in bread dough also inhibited growth of the aerobic bacteria and molds on the bread surface (by $0.8{\sim}24$ in log (CFU/g) at 4 day storage). Use of higher than 11% concentration presented initially a strong fine needle flavor to the bread, which disappeared soon after 2 days. Generally addition of the pine needle extract syrup did not give negative effects on the bread quality including sensory quality. Therefore, the addition of the needle extract syrup could contribute to improving the storage stability and extending the shelf life of the bread.

Removal Characteristic of Ammonia Nitrogen and Behavior of Nitrogen in Synthetic Wastewater Using Leclercia Adecarboxylata (Leclercia Adecarboxylata를 이용한 합성폐수의 암모니아성질소 제거특성 및 질소거동)

  • Lee, Hyun-Hee;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.460-465
    • /
    • 2007
  • In this study, the removal characteristic of ammonia nitrogen and behavior of nitrogen was investigated using Leclercia adecarboxylata, which was derived from the culture contaminated by ammonia nitrogen of high concentration. The method of ammonia nitrogen removal was not biological nitrification and denitrification but elimination of nutrient salt with internal synthesis of microorganisms which use ammonia nitrogen as substrate. L. adecarboxylata(one of ammonia synthesis microorganisms) was highly activated and showed the most high removal efficiency in free salt condition but the removal efficiency decreased badly in salt concentration of more than 4%. About 80 mg/L of $NH_3-N$ was mostly removed within 20 hours and 500 mg/L of $NH_3-N$ showed less then removal efficiency of 50% because carbon source was not enough. However, ammonium nitrogen concentration was decreased again when the carbon source was inserted additionally thus, ammonium nitrogen removal efficiency by L. adecarboxylata, was related to amount of carbon source. pH decreased from 8.0 to 6.36 according to growth of L. adecarboxylata. Concentration of nitrite nitrogen and nitrate nitrogen did not increase and TKN concentration showed no variation while ammonia nitrogen was removed by L. adecarboxylata. In addition to, when content of protein in organic nitrogen was measured, protein was not detected at the beginning of microorganism synthesis but protein of 193.1 mg/L was detected after 48 hours. Hence, ammonium nitrogen was not decomposed as nitrate nitrogen and nitrite nitrogen but synthesized by L. adecarboxylata, which has excellent ability of nitrogen synthesis and can threat ammonia nitrogen of high concentration in wastewater.

Initial Risk Assessment of Benzoyl peroxide in Environment (Benzoyl peroxide의 환경에서의 초기 위해성 평가)

  • Kim Mi Kyoung;Bae Heekyung;Kim Su-Hyon;Song Sanghwan;Koo Hyunju;Park Kwangsik;Lee Moon-Soon;Jeon Sung-Hwan;Na Jin-Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.

Effect of Continuous use of Inorganic Fertilizer on the Soil Organisms and Food Chain (무기질비료의 장기연용이 토양생물 및 먹이연쇄에 미치는 영향)

  • Eo, Jinu;Park, Kee-Choon;Park, Jin-Myeon;Kim, Myung-Hyun;Choi, Soon-Kun;Bang, Hea-Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.39-45
    • /
    • 2016
  • BACKGROUND: This study aimed to evaluate the combined effects of three components (NPK) of chemical fertilizers with basal application of compost on soil organisms.METHODS AND RESULTS: The soil was treated with five treatments continuously for 15 years: control, PK, NK, NP and NPK. The application of N increased plant growth or biomass, and enhanced organic matter content in the soils. Levels of microbial phospholipid fatty acids (PLFAs) in the soils did not show marked differences among the soils treated with different treatments. However, the principal component analysis showed the changes in the structure of the microbial community in the soil, depending on treatments added. Nitrogen application caused a decrease of pH and an increase of EC in the soils, and these environmental stresses appeared to offset the promoting effect of increased organic matter content on microbial abundance. The abundance of bacterivorous nematodes was the highest in the soils after treating NPK; however, the abundance of fungivorous nematodes was unaffected. There was no significant correlation between the abundances of microbial groups and their feeders. Organic matter content was significantly correlated with the abundance of nematodes in the soils.CONCLUSION: Our results showed that chemical fertilizers affect the soil food chains through both biotic and abiotic factors, and a trophic cascade in the soils may not occur in response to long-term fertilization.

Culture characteristics and genetic relationship of morel mushroom (Morchella spp.) isolates from Korea and other countries (곰보버섯 (Morchella spp.) 수집균주의 배양적특성 및 유전적 유연관계)

  • Min, Gyeong-Jin;Park, Hye-sung;Lee, Eun-ji;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.18 no.1
    • /
    • pp.100-106
    • /
    • 2020
  • Eight morel mushroom species were collected from Korea and other countries. The culture characteristics, genetic relationships, and beta-glucan content of the strains were analyzed. The mycelia of Morchella species exhibited optimal growth when cultured in dark at 25 ℃ in media with pH 7. The mycelia had a distinctive mycelial scent and characteristically changed color, being white initially, and then turning dark yellow to dark brown as it grew. The mycelia were classified into five types based on morphology. The isolates were identified as Morchella conica, two M. sextelata, M. importuna, M. esculenta, and three M. crassipes, based on ITS-rDNA sequences. PCR polymorphisms were variably produced within Morchella spp. using Universal Fungal Fingerprinting Primers (UFPF) and classified into four groups at the intra and inter species level. The strains, KMCC04971 and KMCC04407, showed the same banding pattern as M. conica and M. sextelata, respectively; however, these results were different from those of ITS analysis. Glucan content analysis by strain showed that the KMCC 04973 strain of M. importuna had the highest alpha- and beta-glucan content, at 16.4 g and 33.1 g per 100 g, respectively.

Effect of Harvest Stage of Corn on Nutritive Values and Quality of Roll Baled Corn Silage Manufactured with Corn Grown in Paddy Land (논에서 생산된 옥수수의 수확시기가 곤포사일리지의 사료가치와 품질에 미치는 영향)

  • Choi, Ki-Choon;Jo, Nam-Chul;Jung, Min-Woong;Lee, Kyung-Dong;Kim, Jong-Geun;Lim, Young-Chul;Kim, Won-Ho;Oh, Yung-Keun;Choi, Jin-Hyuk;Kim, Cheon-Man;Jung, Du-Keun;Choi, Jong-Man
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.1
    • /
    • pp.65-74
    • /
    • 2011
  • This study was carried out to examine the effect of harvest stage of corn on nutritive values and quality of round baled corn silage manufactured with corn grown in paddy land of Department of Animal Resources Development, National Institute of Animal Science, RDA from 2009 to 2010. Corn "Kwangpyungok" was harvested at three different growth times (milk, yellow ripen and ripen stage) and ensiled at each harvest stages. Crude protein (CP) and TDN (total digestible nutrient) contents of round baled corn silage was decreased and in vitro dry matter digestibility (IVDMD) was not changed with delayed harvest maturity. However, contents of ADF (acid detergent fiber) and NDF(neutral detergent fiber) decreased with delayed harvest maturity. The pH at three different harvest stages ranged from 3.8 to 4.0. The content of lactic acid increased with delayed harvest maturity, but the content of acetic acid decreased. And then, flieg's score reveals that there is an increase in order, ripen stage > yellow ripen stage > milk stage. Therefore, this study suggest that round baled corn silage manufactured at yellow ripen stage can improve the silage quality.

Optimal Culture Conditions on the Keratinase Production by Bacillus sp. SH-517. (Bacillus sp. SH-517에 의한 keratinase의 생성 최적 배양 조건)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Lim, Ki-Hwan;Yi, Dong-Heui
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.839-844
    • /
    • 2008
  • A strain SH-517 which produce extracellular keratinase, was isolated from the soil of a poultry waste and a poultry factory. An isolate SH-517 was identified as Bacillus sp. based on its morphological and biochemical characteristics. The optimal culture conditions for the production of keratinase by Bacillus sp. SH-517 were investigated. The optimal medium composition for keratinase production was determined to be 2.0% chicken feather as carbon source, 0.5% beef extract as organic nitrogen source, 0.5% $KNO_3$ as inorganic nitrogen source and 0.06% KCl, 0.05% NaCl, 0.04% $KH_2PO_4$, 0.03% $K_2HPO_4$ as mineral source and 0.01% yeast extract as growth factor. The optimal temperature and pH of medium were shown $40^{\circ}C$ and 8.5 with shaking culture (180 rpm/min), respectively. The maximum keratinase production reached maximum of 125 units/ml/min after 42 hr of cultivation under the optimal culturing conditions.

Characteristics and Preservation of the Plain Bread Added with Onion Juice. (양파즙 첨가 식빵의 특성과 저장 효과)

  • Lee, Hee-Jung;Jung, Sang-In;Hwang, Yong-Il
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.781-786
    • /
    • 2009
  • The characteristics and preservation of plain bread with 0, 3, 6, 9, 12 and 15% of onion juice added were investigated during storage at room temperature. The weight, volume and specific volume of bread with added onion juice increased, compared to those of the control bread. The color value of bread when onion juice was added had lower values of lightness and higher values of redness and yellowness than those of the control bread. The pH was lower in the bread during storage, and it decreased with an increase of onion juice. Hardness was increased and water activity was decreased in the bread during storage. With an increment of onion juice, hardness was the lowest but water activity was the highest. The addition of onion juice also inhibited the growth of aerobic bacteria and mold on bread. Taste, flavor, surface, texture and overall acceptability by sensory evaluation were the best when 3% of onion juice was added, but there were no significant differences between it and 0% bread. The results imply that addition of onion juice into plain bread will create a healthy and functional bread with an extended shelf-life.

Characteristics of Membrane Filtration as a Post Treatment to Anaerobic Digestion (혐기성 소화의 후처리로서 분리막의 여과특성 연구)

  • Choo, Kwang-Ho;Lee, Chung-Hak;Pek, Un-Hwa;Koh, Ui-Chan;Kim, Sang-Won;Koh, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.730-738
    • /
    • 1992
  • Filtration characteristics according to membrane materials were studied In the ultrafiltration of anaerobic digestion broth as a post treatment method. A series of resistances for different membranes were quantitatively assessed on the basis of the resistance-in-series model. Flux behavior observed with the digestion broth was irrelevant to initial water permeabilities of each membrane. The fluoro polymer membrane showed the most significant improvement of flux with increase of cross-flow velocity, which suggests that the cake layer formed on this membrane is more weakly attached to the membrane surface than those on the other membranes. Flux reduction during longtime running was attrib-used to the polarization layer resistance ($R_p$) as well as the fouling layer resistance($R_f$). Continuous increase of $R_p$ may reflect the variation in the characteristics of cake layers, which could result from size, shape, and structure changes due to lysis and growth of biomass. Hydrophilic cellulosic membrane had a much lower fouling tendency than hydrophobic polysulfone membrane. The depressurization method induced a small increase in flux of $5-10L/m^2/h$. During washing and cleaning, filtrability of each membrane was rapidly recovered within 15 minutes until a stationary value was reached.

  • PDF