• Title/Summary/Keyword: growth optimization

Search Result 635, Processing Time 0.03 seconds

The Application of the Growth-Strain Method to the Shape Optimization of the Flow System (유동시스템의 형상 최적화에 성장-변형률법의 적용)

  • Maeng, Joo-Sung;Han, Seog-Young;Kim, Jong-Pill
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.533-538
    • /
    • 2001
  • In general, shape optimization design of the flow system has done to obtain the effects, which are required in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. But, in empirical analysis case, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method case, it usually needs many design parameters, because of the required object-function. In this paper, we present a newly numerical analysis, the growth-strain method having only one design parameter. That optimizes a shape by distributing a design parameter such as dissipation energy to be uniformed in the flow system. Also, we apply this shape design process to the three-flow systems, and then we identify that the resulting shape approaches the known optimal shape in the numerical values. Consequently, we confirm that the proposed method is very efficient and practical in the shape optimization of the flow system.

  • PDF

Application of the Growth-Strain Method for Shape Optimal Design of a Flow System (유동 시스템의 형상 최적 설계를 위한 성장-변형률법의 적용)

  • Han, Seog-Young;Lee, Sang-Hwan;Kim, Jong-Pill;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.945-950
    • /
    • 2002
  • Shape optimization of a flow system is done to obtain the required effects, in the engineering fields. Most of these designs are accomplished by empirical or numerical analysis. In empirical analysis, it is difficult to obtain an optimal shape in the feasible design region. And, in numerical method, it usually needs much calculation expenses for shape optimization, because of design sensitivity analysis. In this study, we used the growth-strain method having only one distributed parameter such as a design variable. It optimizes a shape by making a distributed parameter such as dissipation energy uniform in a flow system, and then applied to two-flow systems. In order to overcome the stability occurred in numerical analysis performed by Azegami, the equation of volumic strain has been modified. Also, the shapes were compared with the known optimal shapes for the flow systems. Consequently, we confirm that the modified growth-strain method is very efficient and practical in shape optimization of the flow systems.

Optimization of Switching Time from Growth to Product Formation for Maximum Productivity of Recombinant Escherichia coli Fermentation (유전자 재조합 대장균 발효의 최대 생산성을 위한 생육에서 제품 생성으로 전환시기의 최적화)

  • Anant Y. Patkar
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.394-400
    • /
    • 1990
  • Maximization of productivity of recombinant cell fermentations requires consideration of the inverse relationship between the host cell growth rate and product formation rate. The problem of maximizing a weighted performance index was solved by using optimal control theory for recombinant E. coli fermentation. Concentration of a growth inhibitor was used as a control variable to manipulate the specific growth rate, and consequently the cloned-gene expression rate. Using a simple unstructured model to describe the main characteristics of this system, theoretical analysis showed that the optimal control profile results in an initial high growth rate phase followed by a low growth rate and high product formation rate phase. Numerical calculations were done to determine optimal switching times from the growth to the production stage for two representative cases corresponding to different dependency of the product formation rate on the growth rate. For the case when product formation rate is sensitive to the specific growth rate, the optimized operation yields about 60% increase in the final product concentration compared with a simple batch fermentation.

  • PDF

Policy research and energy structure optimization under the constraint of low carbon emissions of Hebei Province in China

  • Sun, Wei;Ye, Minquan;Xu, Yanfeng
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.409-419
    • /
    • 2016
  • As a major energy consumption province, the issue about the carbon emissions in Hebei Province, China has been concerned by the government. The carbon emissions can be effectively reduced due to a more rational energy consumption structure. Thus, in this paper the constraint of low carbon emissions is considered as a foundation and four energies--coal, petroleum, natural gas and electricity including wind power, nuclear power and hydro-power etc are selected as the main analysis objects of the adjustment of energy structure. This paper takes energy cost minimum and carbon trading cost minimum as the objective functions based on the economic growth, energy saving and emission reduction targets and constructs an optimization model of energy consumption structure. And empirical research about energy consumption structure optimization in 2015 and 2020 is carried out based on the energy consumption data in Hebei Province, China during the period 1995-2013, which indicates that the energy consumption in Hebei dominated by coal cannot be replaced in the next seven years, from 2014 to 2020, when the coal consumption proportion is still up to 85.93%. Finally, the corresponding policy suggestions are put forward, according to the results of the energy structure optimization in Hebei Province.

A Study on 2-D Airfoil Design Optimization by Kriging (Kriging 방법을 이용한 2차원 날개 형상 최적설계에 대한 연구)

  • Ka Jae Do;Kwon Jang Hyuk
    • Journal of computational fluids engineering
    • /
    • v.9 no.1
    • /
    • pp.34-40
    • /
    • 2004
  • Recently with growth in the capability of super computers and Parallel computers, shape design optimization is becoming easible for real problems. Also, Computational Fluid Dynamics(CFD) techniques have been improved for higher reliability and higher accuracy. In the shape design optimization, analysis solvers and optimization schemes are essential. In this work, the Roe's 2nd-order Upwind TVD scheme and DADI time march with multigrid were used for the flow solution with the Euler equation and FDM(Finite Differenciation Method), GA(Genetic Algorithm) and Kriging were used for the design optimization. Kriging were applied to 2-D airfoil design optimization and compared with FDM and GA's results. When Kriging is applied to the nonlinear problems, satisfactory results were obtained. From the result design optimization by Kriging method appeared as good as other methods.

Optimization of Growth Conditions for Production of Zooglan by Zoogloea ramigera (Zooglan 생산을 위한 Zoogloea ramigera의 배양조건의 최적화)

  • 권영은;박상옥;안장우;정윤철;서진호
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.255-258
    • /
    • 1999
  • Effects of growth conditions on the growth of Zoogloea ramigera and the production of zooglan were investigated. The production of zooglan was greatly reduced in the phosphate-limiting medium. $NH_4Cl$ and ${(NH_4)}_2SO_4$ improved cell growth when they were used as a nitrogen source. The medium containing 45 g/L of glucose and 27 g/L of $NaNO_3$ resulted in the highest production of zooglan at 18.5 g/L.

  • PDF

Optimization of Culturing Conditions for Improved Production of Bioactive Metabolites by Pseudonocardia sp. VUK-10

  • Kiranmayi, Mangamuri Usha;Sudhakar, Poda;Sreenivasulu, Kamma;Vijayalakshmi, Muvva
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2011
  • The purpose of the present study was to investigate the influence of cultural and environmental parameters affecting the growth and bioactive metabolite production of the rare strain VUK-10 of actinomycete Pseudonocardia, which exhibits a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was high the in modified yeast extract-malt extract-dextrose (ISP-2) broth, as compared to other tested media. Glucose (1%) and tryptone (0.25%) were found to be the most suitable carbon and nitrogen sources, respectively, for optimum production of growth and bioactive metabolites. Maximum production of bioactive metabolites was found in the culture medium with initial pH 7 incubated with the strain for four days at $30^{\circ}C$, under shaking conditions. This is the first report on the optimization of bioactive metabolites by Pseudonocardia sp. VUK-10.

OPTIMIZATION OF CULTURE CONDITIONS FOR PRODUCTION OF PNEUMOCOCCAL CAPSULAR POLYSACCHARIDE TYPE I

  • Kim, S.N.;K.K. Min;Kim, S.H.;Park, I.H.;Lee, S.H.;S.N. Pyo;D.K. Rhee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.186-186
    • /
    • 1996
  • Streptococcus pneumoniae (pneumococcus), the most common cause of bacterial pneumonia, has an ample polysaccharide(PS) capsule that is highly antigenic and is the source of PS vaccine. This investigation was undertaken to optimize the culture conditions for the production of capsular PS by type 1 pneumococcus. Among several culture media, brain heart infusion (BHI) and Casitone based media were found to support luxuriant growth of pneumococcus type 1 at the same level. Because BHI medium is rather expensive and more complex than the Casitone based media, the Casitone based media was used to study optimization of the culture condition. The phase of growth which accomodated maximum PS production was logarithmic phase. Concentrations of glucose greater than 0.2% did not enhance growth or PS production. Substitution of nitrogen sources with other resources or supplemention of various concentrations of metal ion (with the exception of calcium ion) had adverse effects on growth and PS production. On the other hand, low level aeration was beneficial for increased PS production. Addition of 3 mg/I concentration of methionine, phenylalanine, and threonine were found to enhance growth and PS production. The synergistic effect of all the favorable conditions observed in pneumococcal growth assays provided a two-fold cumulative increase in capsular PS production.

  • PDF

Scenario based optimization of a container vessel with respect to its projected operating conditions

  • Wagner, Jonas;Binkowski, Eva;Bronsart, Robert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.496-506
    • /
    • 2014
  • In this paper the scenario based optimization of the bulbous bow of the KRISO Container Ship (KCS) is presented. The optimization of the parametrically modeled vessel is based on a statistically developed operational profile generated from noon-to-noon reports of a comparable 3600 TEU container vessel and specific development functions representing the growth of global economy during the vessels service time. In order to consider uncertainties, statistical fluctuations are added. An analysis of these data lead to a number of most probable upcoming operating conditions (OC) the vessel will stay in the future. According to their respective likeliness an objective function for the evaluation of the optimal design variant of the vessel is derived and implemented within the parametrical optimization workbench FRIENDSHIP Framework. In the following this evaluation is done with respect to vessel's calculated effective power based on the usage of potential flow code. The evaluation shows, that the usage of scenarios within the optimization process has a strong influence on the hull form.

Optimization of Fermentation Processes with Singular Approximation and Minimum Principle (Singular Approximation과 Minimum Principle을 이용한 발효공정의 최적화)

  • 이중헌;정재철;박영훈
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.3
    • /
    • pp.223-229
    • /
    • 1999
  • The two optimal control algorithms, singular approximation and minimum principle, were compared in this paper. The switching time with singular approximation was determined with mathematical derivation and the optimal control profile of specific growth rate was also calculated with minimum principle. The optimal control profiles were calculated by making simple model correlating the specific cell growth rate and specific product formation rate. The optimal control profiles calculated by singular approximation approach were similar to stepwise form of those calculatd by minimum principles. With the minimum principle, the product concentration was 8% more than that of singular approximation. This performance difference was due to a linearization of a nonlinear function with singular approximation. This optimal approaches were applicable to any system with different optimal cell growth and product formation.

  • PDF