• 제목/요약/키워드: growth of entire functions.

검색결과 60건 처리시간 0.018초

GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS FROM THE VIEW POINT OF RELATIVE (p, q)-TH ORDER

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.405-424
    • /
    • 2018
  • In this paper we study some comparative growth properties of composite entire functions on the basis of relative (p, q)-th order and relative (p, q)-th lower order of entire function with respect to another entire function where p and q are any two positive integers.

RELATIVE ORDER AND RELATIVE TYPE BASED GROWTH PROPERTIES OF ITERATED P ADIC ENTIRE FUNCTIONS

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제26권4호
    • /
    • pp.629-663
    • /
    • 2018
  • Let us suppose that ${\mathbb{K}}$ be a complete ultrametric algebraically closed field and $\mathcal{A}$ (${\mathbb{K}}$) be the ${\mathbb{K}}$-algebra of entire functions on K. The main aim of this paper is to study some newly developed results related to the growth rates of iterated p-adic entire functions on the basis of their relative orders, relative type and relative weak type.

MEASURES OF COMPARATIVE GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS ON THE BASIS OF THEIR RELATIVE (p, q)-TH TYPE AND RELATIVE (p, q)-TH WEAK TYPE

  • Biswas, Tanmay
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제26권1호
    • /
    • pp.13-33
    • /
    • 2019
  • The main aim of this paper is to establish some comparative growth properties of composite entire functions on the basis of their relative (p, q)-th order, relative (p, q)-th lower order, relative (p, q)-th type, relative (p, q)-th weak type of entire function with respect to another entire function where p and q are any two positive integers.

RELATIVE (p, q, t)L-TH ORDER AND RELATIVE (p, q, t)L-TH TYPE BASED SOME GROWTH ASPECTS OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Biswas, Tanmay
    • 호남수학학술지
    • /
    • 제41권3호
    • /
    • pp.463-487
    • /
    • 2019
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative (p, q, t)L-th order and relative (p, q, t)L-th type of entire and meromorphic function with respect to another entire function.

SOME GENERALIZED GROWTH PROPERTIES OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Biswas, Tanmay;Biswas, Chinmay
    • Korean Journal of Mathematics
    • /
    • 제29권1호
    • /
    • pp.121-136
    • /
    • 2021
  • In this paper we wish to prove some results relating to the growth rates of composite entire and meromorphic functions with their corresponding left and right factors on the basis of their generalized order (��, ��) and generalized lower order (��, ��), where �� and �� are continuous non-negative functions defined on (-∞, +∞).

GENERALIZED RELATIVE ORDER (α, β) ORIENTED SOME GROWTH PROPERTIES OF COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

  • Tanmay Biswas ;Chinmay Biswas
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권2호
    • /
    • pp.139-154
    • /
    • 2023
  • In this paper we wish to prove some results relating to the growth rates of composite entire and meromorphic functions with their corresponding left and right factors on the basis of their generalized relative order (α, β) and generalized relative lower order (α, β), where α and β are continuous non-negative functions defined on (-∞, +∞).

SOME GROWTH ASPECTS OF COMPOSITE P-ADIC ENTIRE FUNCTIONS IN THE LIGHT OF THEIR (p, q)-TH RELATIVE ORDER AND (p, q)-TH RELATIVE TYPE

  • Biswas, Tanmay
    • 충청수학회지
    • /
    • 제31권4호
    • /
    • pp.429-460
    • /
    • 2018
  • Let us consider that ${\mathbb{K}}$ be a complete ultrametric algebraically closed field and ${\mathcal{A}}({\mathbb{K}})$ be the ${\mathbb{K}}-algebra$ of entire functions on ${\mathbb{K}}$. In this paper we introduce the notions of (p, q)-th relative order and (p, q)-th relative type of p adic entire functions where p and q are any two positive integers and then study some growth properties of composite p adic entire functions in the light of their (p, q)-th relative order and (p, q)-th relative type. After that we show that (p, q) th relative order and (p, q)-th relative type are remain unchanged for derivatives under some certain conditions.