• Title/Summary/Keyword: growth factor protein

Search Result 1,304, Processing Time 0.035 seconds

The Effect of Bacillus-Fermented Scutellariae Radix Acupuncture Solution on Chemokine and Growth Factor Production in Mouse Macrophage Stimulated by Lipopolysaccharide (바실러스균 발효황금약침액이 마우스 대식세포의 케모카인 및 생성인자 생성에 미치는 영향)

  • Park, Wan-Su
    • Korean Journal of Acupuncture
    • /
    • v.27 no.3
    • /
    • pp.109-118
    • /
    • 2010
  • Objectives : The purpose of this study is to investigate the effect of Bacillus-fermented Scutellariae Radix acupuncture solution (SB) on chemokine and growth factor production in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Methods : Productions of chemokine and growth factor were measured by High-throughput Multiplex Bead based Assay with Bio-plex Suspension Array System based on xMAP$^{(R)}$ technology. Firstly, cell culture supernatant was obtained after treatment with LPS (1 ${\mu}g$/mL) and SB for 24 hours. Then, it was incubated with the antibody-conjugated beads for 30 minutes. Detection antibody was then added and incubated for 30 minutes. After incubated for 30 minutes, strepavidin-conjugated phycoerythrin (SAPE) was added. After another 30 minutes incubation, the level of SAPE fluorescence was analyzed in Bio-plex Suspension Array System. Results : The results of the experiment are as follows. 1. SB significantly inhibited the LPS-induced production of vascular endothelial growth factor (VEGF), interferon-inducible protein (IP)-10, and granulocyte-colony stimulating factor (G-CSF) at the concentration of 25, 50, 100, and 200 ${\mu}g$/mL in RAW 264.7 cells (P < 0.05). 2. SB significantly inhibited the LPS-induced production of Eotaxin at the concentration of 25, 100, and 200 ${\mu}g$/mL in RAW 264.7 cells (P < 0.05). 3. SB significantly inhibited the LPS-induced production of MIP-$1\alpha$ at the concentration of 25 and 100 ${\mu}g$/mL in RAW 264.7 cells (P < 0.05). Conclusions : These results suggest that SB has immuno-modulatory property related with its inhibition of VEGF, IP-10, G-CSF, and Eotaxin production in macrophages.

Serum levels of free insulin-like growth factor-I and clinical value in healthy children (한국 소아 및 청소년에서 혈중 유리 insulin-like growth factor-I 농도치와 임상적 의의)

  • Chung, Young Hee;Chung, Woo Yeong
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • Purpose : The serum levels of total insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3 reflect endogenous growth hormone (GH) secretion in healthy children. Free form of IGF-I which is suggested to have more potent biological action than complex form of IGF-I. The aim of this study is to investigate the serum levels of free IGF-I and its clinical value in healthy children. Methods : Serum levels of total IGF-I and IGFBP-3 were determined in 494 healthy children (248 boys and 246 girls) by RIA and IRMA. Serum level of free IGF-I was determined in 206 healthy children (103 boys and 103 girls) by IRMA. Results : The free IGF-I level increased with age in both sex. The free IGF-I level increased continuously between 7 and 15 years of age in boys, but decrement was noted after 14 years of age in girls. Serum total IGF-I level also increased with age in similar pattern of that of free IGF-I. There were no significant differences of mean values of the ratio of free IGF-I/total IGF-I in relation to age in both sex. And there were significant correlations between the level of free IGF-I and total IGF-I and the ratio of total IGF-I/IGFBP-3, respectively. Conclusion : In healthy children, serum free IGF-I increased with age in both sex and high free IGF-I level may play an important role in pubertal growth spurt. Our results suggest that the increased serum free IGF-I level in puberty may reflect changes in total IGF-I rather than IGFBP-3. But free IGF-I does not have more clinical value than total IGF-I because of no significant differences of mean values of the ratio of free IGF-I/total IGF-I in relation to age.

Bidirectional Cross-talk Between Estrogen Receptor and Growth Factor Receptors in Breast Cancer Cell (유방암세포에서 에스트로겐 수용체와 성장인자 수용체 사이의 양방향 상호작용)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.265-273
    • /
    • 2018
  • Estrogen (E2) is involved in the development and progression of breast cancer and is mediated by estrogen receptor (ER). ER plays important roles in cellular proliferation, migration, invasion and causing drug resistance through diverse cross-talks with epidermal growth factor receptor (EGFR) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathways in breast cancer cells. Breast cancer is caused mainly by break-down of homeostasis of endocrine signaling pathways especially by the uncontrolled expression and increased activities of E2/IGF-1/EGF, ER/G-protein estrogen receptor (GPER)/IGF-1R/EGFR and their intracellular signaling mediators. These changes influence the complex cross-talk between E2 and growth factors' signaling, eventually resulting in the progression of cancer and resistance against endocrine regulators. Thus, elucidation of the molecular mechanisms in stepwise of the cross-talk between E2 and growth factors will contribute to the customized treatment according to the diverse types of breast cancer. In particular, as strategies for the treatment of breast cancer with diverse genotypes and phenotypes, there can be use of aromatase inhibitors and blockers of E2 action for the ER+ hormone-dependent breast cancer cells and use of IGF-1R/EGFR activity blockers for suppression of cancer cell proliferation from the cross-talk between E2 and growth factors. Furthermore, changes in the expression of the ECM molecules regulated by the cross-talk between ER and EGFR/IGF-1R can be used for the targeted therapeutics against the migration of breast cancer cells. Therefore, it is required for the cross-talk among the signaling pathways of ER, GPER, IGF-1R and EGFR concerning cancer progression to be elucidated in more detail at the molecular level.

Possible roles of amyloid intracellular domain of amyloid precursor protein

  • Chang, Keun-A;Suh, Yoo-Hun
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.656-663
    • /
    • 2010
  • Amyloid precursor protein (APP), which is critically involved in the pathogenesis of Alzheimer's disease (AD), is cleaved by gamma/epsilon-secretase activity and results in the generation of different lengths of the APP Intracellular C-terminal Domain (AICD). In spite of its small size and short half-life, AICD has become the focus of studies on AD pathogenesis. Recently, it was demonstrated that AICD binds to different intracellular binding partners ('adaptor protein'), which regulate its stability and cellular localization. In terms of choice of adaptor protein, phosphorylation seems to play an important role. AICD and its various adaptor proteins are thought to take part in various cellular events, including regulation of gene transcription, apoptosis, calcium signaling, growth factor, and $NF-{\kappa}B$ pathway activation, as well as the production, trafficking, and processing of APP, and the modulation of cytoskeletal dynamics. This review discusses the possible roles of AICD in the pathogenesis of neurodegenerative diseases including AD.

Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth

  • Bak, Dong Ho;Choi, Mi Ji;Kim, Soon Re;Lee, Byung Chul;Kim, Jae Min;Jeon, Eun Su;Oh, Wonil;Lim, Ee Seok;Park, Byung Cheol;Kim, Moo Joong;Na, Jungtae;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.555-566
    • /
    • 2018
  • Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and ${\beta}-catenin$; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.

Effect of Electrochemical Redox Reaction on Growth and Metabolism of Saccharomyces cerevisiae as an Environmental Factor

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ahn, Dae-Hee;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.445-453
    • /
    • 2007
  • The effect of an electrochemically generated oxidation-reduction potential and electric pulse on ethanol production and growth of Saccharomyces cerevisiae ATCC 26603 was experimented and compared with effects of electron mediators (neutral red, benzyl viologen, and thionine), chemical oxidants (hydrogen peroxide and hypochlorite), chemical reductants (sulfite and nitrite), oxygen, and hydrogen. The oxidation (anodic) and reduction (cathodic) potential and electric pulse activated ethanol production and growth, and changed the total soluble protein pattern of the test strain. Neutral red electrochemically reduced activated ethanol production and growth of the test strain, but benzyl viologen and thionine did not. Nitrite inhibited ethanol production but did not influence growth of the test strain. Hydrogen peroxide, hypochlorite, and sulfite did not influence ethanol production and growth of the test strain. Hydrogen and oxygen also did not influence the growth and ethanol production. It shows that the test strain may perceive electrochemically generated oxidation-reduction potential and electric pulse as an environmental factor.

Towards a Structure-Function Relationship for Vascular Endothelial Growth Factor-B (VEGF-B)

  • Scrofani, Sergio D.B.;Nash, Andrew D.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.543-551
    • /
    • 2001
  • The vascular endothelial growth factor (VEGF), or VEGF-A, is intimately involved in both physiological and pathological forms of angiogenesis. VEGF-A is now recognized as the founding member of a family of growth factors that has expanded to include VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placental growth factor (PIGF). This family of cytokines binds differentially to at least three receptor tyrosine kinases, however, the extent to which family members other than VEGF-A contribute to physiological and pathological angiogenesis remains unclear. Issues that are of relevance include uncertainty regarding the consequences of signaling through VEGF - RI in particular, and the ability of some family members to heterodimerize, leading to the possibility ofheterodimeric receptor complexes. Structural characterization is one approach that can be used to address these issues, however, the vast majority of previous structure-function studies have only focused on VEGF-A. While these studies may provide some clues regarding the structural basis of the interaction of other family members with their receptors, studies using the ligands themselves are clearly required if highly specific interactions are to be revealed. With the recent progress toward refolding and purifying substantial' quantities of other VEGF family members, such structural studies are now possible. Here, these ~ssues are addressed with a particular emphasis on VEGF-B and its receptors.

  • PDF

Delivery of growth factor-associated genes to mesenchymal stem cells for cartilage and bone tissue regeneration

  • Ahn, Jongchan;Park, Seah;Cha, Byung-Hyun;Kim, Jae Hwan;Park, Hansoo;Joung, Yoon Ki;Han, Inbo;Lee, Soo-Hong
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.151-162
    • /
    • 2014
  • Genetically-modified mesenchymal stem cells (GM-MSCs) have emerged as promising therapeutic tools for orthopedic degenerative diseases. GM-MSCs have been widely reported that they are able to increase bone and cartilage tissue regeneration not only by secreting transgene products such as growth factors in a long-term manner, also by inducing MSCs into tissue-specific cells. For example, MSCs modified with BMP-2 gene increased secretion of BMP-2 protein resulting in enhancement of bone regeneration, while MSCs with TGF-b gene did cartilage regeneration. In this review, we introduce several growth factors for gene delivery to MSCs and strategies for bone and cartilage tissue regeneration using GM-MSCs. Furthermore, we describe strategies for strengthening GM-MSCs to more intensively induce tissue regeneration by co-delivery system of multiple genes.

Epidermal Growth Factor Receptor-Related DNA Repair and Radiation-Resistance Regulatory Mechanisms: A Mini-Review

  • Bai, Jing;Guo, Xiao-Guang;Bai, Xiao-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4879-4881
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) overexpression is associated with resistance to chemotherapy and radiotherapy. The EGFR modulates DNA repair after radiation-induced damage through an association with the catalytic subunit of DNA protein kinase. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage induced by ionizing radiation, and non-homologous end joining is the predominant pathway for repair of radiation-induced DSBs. Some cell signaling pathways that respond to normal growth factors are abnormally activated in human cancer. These pathways also invoke the cell survival mechanisms that lead to resistance to radiation. The molecular connection between the EGFR and its control over DNA repair capacity appears to be mediated by one or more signaling pathways downstream of this receptor. The purpose of this mini-review was not only to highlight the relation of the EGFR signal as a regulatory mechanism to DNA repair and radiation resistance, but also to provide clues to improving existing radiation resistance through novel therapies based on the above-mentioned mechanism.