DOI QR코드

DOI QR Code

Possible roles of amyloid intracellular domain of amyloid precursor protein

  • Chang, Keun-A (Department of Pharmacology, College of Medicine, Neuroscience Research Institute, MRC, Seoul National University) ;
  • Suh, Yoo-Hun (Department of Pharmacology, College of Medicine, Neuroscience Research Institute, MRC, Seoul National University)
  • Accepted : 2010.09.29
  • Published : 2010.10.31

Abstract

Amyloid precursor protein (APP), which is critically involved in the pathogenesis of Alzheimer's disease (AD), is cleaved by gamma/epsilon-secretase activity and results in the generation of different lengths of the APP Intracellular C-terminal Domain (AICD). In spite of its small size and short half-life, AICD has become the focus of studies on AD pathogenesis. Recently, it was demonstrated that AICD binds to different intracellular binding partners ('adaptor protein'), which regulate its stability and cellular localization. In terms of choice of adaptor protein, phosphorylation seems to play an important role. AICD and its various adaptor proteins are thought to take part in various cellular events, including regulation of gene transcription, apoptosis, calcium signaling, growth factor, and $NF-{\kappa}B$ pathway activation, as well as the production, trafficking, and processing of APP, and the modulation of cytoskeletal dynamics. This review discusses the possible roles of AICD in the pathogenesis of neurodegenerative diseases including AD.

Keywords

References

  1. Suh, Y. H. and Checler, F. (2002) Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer's disease. Pharmacol. Rev. 54, 469-525. https://doi.org/10.1124/pr.54.3.469
  2. (2009) 2009 Alzheimer's disease facts and figures. Alzheimers Dement 5, 234-270. https://doi.org/10.1016/j.jalz.2009.03.001
  3. Ferri, C. P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., Hall, K., Hasegawa, K., Hendrie, H., Huang, Y., Jorm, A., Mathers, C., Menezes, P. R., Rimmer, E. and Scazufca, M. (2005) Global prevalence of dementia: a Delphi consensus study. Lancet. 366, 2112-2117. https://doi.org/10.1016/S0140-6736(05)67889-0
  4. Wimo, A., Winblad, B. and Jonsson, L. (2010) The worldwide societal costs of dementia: Estimates for 2009. Alzheimers Dement 6, 98-103. https://doi.org/10.1016/j.jalz.2010.01.010
  5. Small, G. W., Rabins, P. V., Barry, P. P., Buckholtz, N. S., DeKosky, S. T., Ferris, S. H., Finkel, S. I., Gwyther, L. P., Khachaturian, Z. S., Lebowitz, B. D., McRae, T. D., Morris, J. C., Oakley, F., Schneider, L. S., Streim, J. E., Sunderland, T., Teri, L. A. and Tune, L. E. (1997) Diagnosis and treatment of Alzheimer disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer's Association, and the American Geriatrics Society. JAMA 278, 1363-1371. https://doi.org/10.1001/jama.278.16.1363
  6. Golde, T. E. (2003) Alzheimer disease therapy: can the amyloid cascade be halted? J. Clin. Invest 111, 11-18. https://doi.org/10.1172/JCI200317527
  7. Haass, C., Hung, A. Y., Schlossmacher, M. G., Oltersdorf, T., Teplow, D. B. and Selkoe, D. J. (1993) Normal cellular processing of the beta-amyloid precursor protein results in the secretion of the amyloid beta peptide and related molecules. Ann. N. Y. Acad. Sci. 695, 109-116. https://doi.org/10.1111/j.1749-6632.1993.tb23037.x
  8. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B. and Selkoe, D. J. (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359, 322-325. https://doi.org/10.1038/359322a0
  9. Mattson, M. P., Barger, S. W., Cheng, B., Lieberburg, I., Smith-Swintosky, V. L. and Rydel, R. E. (1993) beta-Amyloid precursor protein metabolites and loss of neuronal $Ca^{2+}$ homeostasis in Alzheimer's disease. Trends Neurosci. 16, 409-414. https://doi.org/10.1016/0166-2236(93)90009-B
  10. Sisodia, S. S. (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. U.S.A. 89, 6075-6079. https://doi.org/10.1073/pnas.89.13.6075
  11. Annaert, W. G., Levesque, L., Craessaerts, K., Dierinck, I., Snellings, G., Westaway, D., George-Hyslop, P. S., Cordell, B., Fraser, P. and De Strooper, B. (1999) Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J. Cell Biol. 147, 277-294. https://doi.org/10.1083/jcb.147.2.277
  12. Tarassishin, L., Yin, Y. I., Bassit, B. and Li, Y. M. (2004) Processing of Notch and amyloid precursor protein by gamma-secretase is spatially distinct. Proc. Natl. Acad. Sci. U.S.A. 101, 17050-17055. https://doi.org/10.1073/pnas.0408007101
  13. Chyung, J. H., Raper, D. M. and Selkoe, D. J. (2005) Gamma-secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. J. Biol. Chem. 280, 4383-4392. https://doi.org/10.1074/jbc.M409272200
  14. Edbauer, D., Winkler, E., Regula, J. T., Pesold, B., Steiner, H. and Haass, C. (2003) Reconstitution of gamma-secretase activity. Nat. Cell Biol. 5, 486-488. https://doi.org/10.1038/ncb960
  15. De Strooper, B. and Annaert, W. (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J. Cell Sci. 113 (Pt 11), 1857-1870.
  16. Zhao, G., Mao, G., Tan, J., Dong, Y., Cui, M. Z., Kim, S. H. and Xu, X. (2004) Identification of a new presenilin-dependent zeta-cleavage site within the transmembrane domain of amyloid precursor protein. J. Biol. Chem. 279, 50647-50650. https://doi.org/10.1074/jbc.C400473200
  17. Yu, C., Kim, S. H., Ikeuchi, T., Xu, H., Gasparini, L., Wang, R. and Sisodia, S. S. (2001) Characterization of a presenilin-mediated amyloid precursor protein carboxyl-terminal fragment gamma. Evidence for distinct mechanisms involved in gamma -secretase processing of the APP and Notch1 transmembrane domains. J. Biol. Chem. 276, 43756-43760. https://doi.org/10.1074/jbc.C100410200
  18. Sastre, M., Steiner, H., Fuchs, K., Capell, A., Multhaup, G., Condron, M. M., Teplow, D. B. and Haass, C. (2001) Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2, 835-841. https://doi.org/10.1093/embo-reports/kve180
  19. Weidemann, A., Eggert, S., Reinhard, F. B., Vogel, M., Paliga, K., Baier, G., Masters, C. L., Beyreuther, K. and Evin, G. (2002) A novel epsilon-cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry 41, 2825-2835. https://doi.org/10.1021/bi015794o
  20. Lu, D. C., Rabizadeh, S., Chandra, S., Shayya, R. F., Ellerby, L. M., Ye, X., Salvesen, G. S., Koo, E. H. and Bredesen, D. E. (2000) A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat. Med. 6, 397-404. https://doi.org/10.1038/74656
  21. Goodger, Z. V., Rajendran, L., Trutzel, A., Kohli, B. M., Nitsch, R. M. and Konietzko, U. (2009) Nuclear signaling by the APP intracellular domain occurs predominantly through the amyloidogenic processing pathway. J. Cell Sci. 122, 3703-3714. https://doi.org/10.1242/jcs.048090
  22. Cupers, P., Orlans, I., Craessaerts, K., Annaert, W. and De Strooper, B. (2001) The amyloid precursor protein (APP)-cytoplasmic fragment generated by gamma-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture. J. Neurochem. 78, 1168-1178. https://doi.org/10.1046/j.1471-4159.2001.00516.x
  23. Venugopal, C., Pappolla, M. A. and Sambamurti, K. (2007) Insulysin cleaves the APP cytoplasmic fragment at multiple sites. Neurochem. Res. 32, 2225-2234. https://doi.org/10.1007/s11064-007-9449-z
  24. Edbauer, D., Willem, M., Lammich, S., Steiner, H. and Haass, C. (2002) Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD). J. Biol. Chem. 277, 13389-13393. https://doi.org/10.1074/jbc.M111571200
  25. Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E. A., Frosch, M. P., Eckman, C. B., Tanzi, R. E., Selkoe, D. J. and Guenette, S. (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc. Natl. Acad. Sci. U.S.A. 100, 4162-4167. https://doi.org/10.1073/pnas.0230450100
  26. Nunan, J., Williamson, N. A., Hill, A. F., Sernee, M. F., Masters, C. L. and Small, D. H. (2003) Proteasome-mediated degradation of the C-terminus of the Alzheimer's disease beta-amyloid protein precursor: effect of C-terminal truncation on production of beta-amyloid protein. J. Neurosci. Res. 74, 378-385. https://doi.org/10.1002/jnr.10646
  27. Lai, A., Sisodia, S. S. and Trowbridge, I. S. (1995) Characterization of sorting signals in the beta-amyloid precursor protein cytoplasmic domain. J. Biol. Chem. 270, 3565-3573. https://doi.org/10.1074/jbc.270.8.3565
  28. Ramelot, T. A., Gentile, L. N. and Nicholson, L. K. (2000) Transient structure of the amyloid precursor protein cytoplasmic tail indicates preordering of structure for binding to cytosolic factors. Biochemistry 39, 2714-2725. https://doi.org/10.1021/bi992580m
  29. Ramelot, T. A. and Nicholson, L. K. (2001) Phosphorylation-induced structural changes in the amyloid precursor protein cytoplasmic tail detected by NMR. J. Mol. Biol. 307, 871-884. https://doi.org/10.1006/jmbi.2001.4535
  30. Ando, K., Iijima, K. I., Elliott, J. I., Kirino, Y. and Suzuki, T. (2001) Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid. J. Biol. Chem. 276, 40353-40361. https://doi.org/10.1074/jbc.M104059200
  31. Tarr, P. E., Roncarati, R., Pelicci, G., Pelicci, P. G. and D'Adamio, L. (2002) Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmic tail promotes interaction with Shc. J. Biol. Chem. 277, 16798-16804. https://doi.org/10.1074/jbc.M110286200
  32. Borg, J. P., Ooi, J., Levy, E. and Margolis, B. (1996) The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell Biol. 16, 6229-6241. https://doi.org/10.1128/MCB.16.11.6229
  33. Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A. and Russo, T. (1995) The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein. J. Biol. Chem. 270, 30853-30856. https://doi.org/10.1074/jbc.270.52.30853
  34. Matsuda, S., Yasukawa, T., Homma, Y., Ito, Y., Niikura, T., Hiraki, T., Hirai, S., Ohno, S., Kita, Y., Kawasumi, M., Kouyama, K., Yamamoto, T., Kyriakis, J. M. and Nishimoto, I. (2001) c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer's amyloid precursor protein with JNK. J. Neurosci. 21, 6597-6607.
  35. Scheinfeld, M. H., Roncarati, R., Vito, P., Lopez, P. A., Abdallah, M. and D'Adamio, L. (2002) Jun NH2-terminal kinase (JNK) interacting protein 1 (JIP1) binds the cytoplasmic domain of the Alzheimer's beta-amyloid precursor protein (APP). J. Biol. Chem. 277, 3767-3775. https://doi.org/10.1074/jbc.M108357200
  36. Zambrano, N., Bruni, P., Minopoli, G., Mosca, R., Molino, D., Russo, C., Schettini, G., Sudol, M. and Russo, T. (2001) The beta-amyloid precursor protein APP is tyrosine-phosphorylated in cells expressing a constitutively active form of the Abl protoncogene. J. Biol. Chem. 276, 19787-19792. https://doi.org/10.1074/jbc.M100792200
  37. Marquez-Sterling, N. R., Lo, A. C., Sisodia, S. S. and Koo, E. H. (1997) Trafficking of cell-surface beta-amyloid precursor protein: evidence that a sorting intermediate participates in synaptic vesicle recycling. J. Neurosci. 17, 140-151.
  38. Raychaudhuri, M. and Mukhopadhyay, D. (2010) Grb2-mediated alteration in the trafficking of AbetaPP: insights from Grb2-AICD interaction. J. Alzheimers. Dis. 20, 275-292. https://doi.org/10.3233/JAD-2010-1371
  39. Kinoshita, A., Whelan, C. M., Berezovska, O. and Hyman, B. T. (2002) The gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein induces apoptosis via Tip60 in H4 cells. J. Biol. Chem. 277, 28530-28536. https://doi.org/10.1074/jbc.M203372200
  40. Kimberly, W. T., Zheng, J. B., Guenette, S. Y. and Selkoe, D. J. (2001) The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J. Biol. Chem. 276, 40288-40292. https://doi.org/10.1074/jbc.C100447200
  41. Kinoshita, A., Whelan, C. M., Smith, C. J., Berezovska, O. and Hyman, B. T. (2002) Direct visualization of the gamma secretase-generated carboxyl-terminal domain of the amyloid precursor protein: association with Fe65 and translocation to the nucleus. J. Neurochem. 82, 839-847. https://doi.org/10.1046/j.1471-4159.2002.01016.x
  42. von Rotz, R. C., Kohli, B. M., Bosset, J., Meier, M., Suzuki, T., Nitsch, R. M. and Konietzko, U. (2004) The APP intracellular domain forms nuclear multiprotein complexes and regulates the transcription of its own precursor. J. Cell Sci. 117, 4435-4448. https://doi.org/10.1242/jcs.01323
  43. Chang, K. A., Kim, H. S., Ha, T. Y., Ha, J. W., Shin, K. Y., Jeong, Y. H., Lee, J. P., Park, C. H., Kim, S., Baik, T. K. and Suh, Y. H. (2006) Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration. Mol. Cell Biol. 26, 4327-4338. https://doi.org/10.1128/MCB.02393-05
  44. Nakaya, T. and Suzuki, T. (2006) Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes Cells 11, 633-645. https://doi.org/10.1111/j.1365-2443.2006.00968.x
  45. Perkinton, M. S., Standen, C. L., Lau, K. F., Kesavapany, S., Byers, H. L., Ward, M., McLoughlin, D. M. and Miller, C. C. (2004) The c-Abl tyrosine kinase phosphorylates the Fe65 adaptor protein to stimulate Fe65/amyloid precursor protein nuclear signaling. J. Biol. Chem. 279, 22084-22091. https://doi.org/10.1074/jbc.M311479200
  46. Cao, X. and Sudhof, T. C. (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115-120. https://doi.org/10.1126/science.1058783
  47. Kim, H. S., Kim, E. M., Lee, J. P., Park, C. H., Kim, S., Seo, J. H., Chang, K. A., Yu, E., Jeong, S. J., Chong, Y. H. and Suh, Y. H. (2003) C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. FASEB J. 17, 1951-1953. https://doi.org/10.1096/fj.03-0106fje
  48. Ikura, T., Ogryzko, V. V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J. and Nakatani, Y. (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463-473. https://doi.org/10.1016/S0092-8674(00)00051-9
  49. Konietzko, U., Goodger, Z. V., Meyer, M., Kohli, B. M., Bosset, J., Lahiri, D. K. and Nitsch, R. M. (2010) Co-localization of the amyloid precursor protein and Notch intracellular domains in nuclear transcription factories. Neurobiol. Aging. 31, 58-73. https://doi.org/10.1016/j.neurobiolaging.2008.03.001
  50. Cao, X. and Sudhof, T. C. (2004) Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J. Biol. Chem. 279, 24601-24611. https://doi.org/10.1074/jbc.M402248200
  51. Zambrano, N., Minopoli, G., de Candia, P. and Russo, T. (1998) The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J. Biol. Chem. 273, 20128-20133. https://doi.org/10.1074/jbc.273.32.20128
  52. Scheinfeld, M. H., Matsuda, S. and D'Adamio, L. (2003) JNK-interacting protein-1 promotes transcription of A beta protein precursor but not A beta precursor-like proteins, mechanistically different than Fe65. Proc. Natl. Acad. Sci. USA. 100, 1729-1734. https://doi.org/10.1073/pnas.0437908100
  53. Sumioka, A., Nagaishi, S., Yoshida, T., Lin, A., Miura, M. and Suzuki, T. (2005) Role of 14-3-3gamma in FE65-dependent gene transactivation mediated by the amyloid beta- protein precursor cytoplasmic fragment. J. Biol. Chem. 280, 42364-42374. https://doi.org/10.1074/jbc.M504278200
  54. Yu, H. T., Chan, W. W., Chai, K. H., Lee, C. W., Chang, R. C., Yu, M. S., McLoughlin, D. M., Miller, C. C. and Lau, K. F. (2010) Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1. J. Cell Biochem. 109, 782-793.
  55. Lau, K. F., Chan, W. M., Perkinton, M. S., Tudor, E. L., Chang, R. C., Chan, H. Y., McLoughlin, D. M. and Miller, C. C. (2008) Dexras1 interacts with FE65 to regulate FE65-amyloid precursor protein-dependent transcription. J. Biol. Chem. 283, 34728-34737. https://doi.org/10.1074/jbc.M801874200
  56. Henriques, A. G., Vieira, S. I., da Cruz e Silva, E. F. and da Cruz e Silva, O. A. (2009) Alphabeta hinders nuclear targeting of AICD and Fe65 in primary neuronal cultures. J. Mol. Neurosci. 39, 248-255. https://doi.org/10.1007/s12031-009-9192-9
  57. Hebert, S. S., Serneels, L., Tolia, A., Craessaerts, K., Derks, C., Filippov, M. A., Muller, U. and De Strooper, B. (2006) Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes. EMBO Rep. 7, 739-745. https://doi.org/10.1038/sj.embor.7400704
  58. Waldron, E., Isbert, S., Kern, A., Jaeger, S., Martin, A. M., Hebert, S. S., Behl, C., Weggen, S., De Strooper, B. and Pietrzik, C. U. (2008) Increased AICD generation does not result in increased nuclear translocation or activation of target gene transcription. Exp. Cell Res. 314, 2419-2433. https://doi.org/10.1016/j.yexcr.2008.05.003
  59. Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K. and Rosenfeld, M. G. (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110, 55-67. https://doi.org/10.1016/S0092-8674(02)00809-7
  60. Pardossi-Piquard, R., Petit, A., Kawarai, T., Sunyach, C., Alves da Costa, C., Vincent, B., Ring, S., D'Adamio, L., Shen, J., Muller, U., St George Hyslop, P. and Checler, F. (2005) Presenilin-dependent transcriptional control of the Abeta-degrading enzyme neprilysin by intracellular domains of betaAPP and APLP. Neuron 46, 541-554. https://doi.org/10.1016/j.neuron.2005.04.008
  61. Creaven, M., Hans, F., Mutskov, V., Col, E., Caron, C., Dimitrov, S. and Khochbin, S. (1999) Control of the histone- acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat. Biochemistry 38, 8826-8830. https://doi.org/10.1021/bi9907274
  62. Ryan, K. A. and Pimplikar, S. W. (2005) Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J. Cell Biol. 171, 327-335. https://doi.org/10.1083/jcb.200505078
  63. Ha, T. Y., Chang, K. A., Kim, J., Kim, H. S., Kim, S., Chong, Y. H. and Suh, Y. H. (2010) S100a9 knockdown decreases the memory impairment and the neuropathology in Tg2576 mice, AD animal model. PLoS One 5, e8840. https://doi.org/10.1371/journal.pone.0008840
  64. Muller, T., Concannon, C. G., Ward, M. W., Walsh, C. M., Tirniceriu, A. L., Tribl, F., Kogel, D., Prehn, J. H. and Egensperger, R. (2007) Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD). Mol. Biol. Cell 18, 201-210. https://doi.org/10.1091/mbc.E06-04-0283
  65. Ozaki, T., Li, Y., Kikuchi, H., Tomita, T., Iwatsubo, T. and Nakagawara, A. (2006) The intracellular domain of the amyloid precursor protein (AICD) enhances the p53-mediated apoptosis. Biochem. Biophys. Res. Commun. 351, 57-63. https://doi.org/10.1016/j.bbrc.2006.09.162
  66. Passer, B., Pellegrini, L., Russo, C., Siegel, R. M., Lenardo, M. J., Schettini, G., Bachmann, M., Tabaton, M. and D'Adamio, L. (2000) Generation of an apoptotic intracellular peptide by gamma-secretase cleavage of Alzheimer's amyloid beta protein precursor. J. Alzheimers. Dis. 2, 289-301. https://doi.org/10.3233/JAD-2000-23-408
  67. Nakayama, K., Ohkawara, T., Hiratochi, M., Koh, C. S. and Nagase, H. (2008) The intracellular domain of amyloid precursor protein induces neuron-specific apoptosis. Neurosci. Lett. 444, 127-131. https://doi.org/10.1016/j.neulet.2008.08.034
  68. Xu, Y., Kim, H. S., Joo, Y., Choi, Y., Chang, K. A., Park, C. H., Shin, K. Y., Kim, S., Cheon, Y. H., Baik, T. K., Kim, J. H. and Suh, Y. H. (2007) Intracellular domains of amyloid precursor-like protein 2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3beta expression. Cell Death Differ 14, 79-91. https://doi.org/10.1038/sj.cdd.4401928
  69. Alves da Costa, C., Sunyach, C., Pardossi-Piquard, R., Sevalle, J., Vincent, B., Boyer, N., Kawarai, T., Girardot, N., St George-Hyslop, P. and Checler, F. (2006) Presenilin-dependent gamma-secretase-mediated control of p53-associated cell death in Alzheimer's disease. J. Neurosci. 26, 6377-6385. https://doi.org/10.1523/JNEUROSCI.0651-06.2006
  70. Vazquez, M. C., Vargas, L. M., Inestrosa, N. C. and Alvarez, A. R. (2009) c-Abl modulates AICD dependent cellular responses: transcriptional induction and apoptosis. J. Cell Physiol. 220, 136-143. https://doi.org/10.1002/jcp.21743
  71. Ha, S., Furukawa, R. and Fechheimer, M. (2010) Association of AICD and Fe65 with Hirano bodies reduces transcriptional activation and initiation of apoptosis. Neurobiol Aging. (in press).
  72. Stokin, G. B., Lillo, C., Falzone, T. L., Brusch, R. G., Rockenstein, E., Mount, S. L., Raman, R., Davies, P., Masliah, E., Williams, D. S. and Goldstein, L. S. (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307, 1282-1288. https://doi.org/10.1126/science.1105681
  73. Gunawardena, S. and Goldstein, L. S. (2001) Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389-401. https://doi.org/10.1016/S0896-6273(01)00496-2
  74. Horiuchi, D., Barkus, R. V., Pilling, A. D., Gassman, A. and Saxton, W. M. (2005) APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr. Biol. 15, 2137-2141. https://doi.org/10.1016/j.cub.2005.10.047
  75. Rusu, P., Jansen, A., Soba, P., Kirsch, J., Lower, A., Merdes, G., Kuan, Y. H., Jung, A., Beyreuther, K., Kjaerulff, O. and Kins, S. (2007) Axonal accumulation of synaptic markers in APP transgenic Drosophila depends on the NPTY motif and is paralleled by defects in synaptic plasticity. Eur. J. Neurosci. 25, 1079-1086. https://doi.org/10.1111/j.1460-9568.2007.05341.x
  76. Ward, M. W., Concannon, C. G., Whyte, J., Walsh, C. M., Corley, B. and Prehn, J. H. (2010) The amyloid precursor protein intracellular domain (AICD) disrupts actin dynamics and mitochondrial bioenergetics. J. Neurochem. 113, 275-284. https://doi.org/10.1111/j.1471-4159.2010.06615.x
  77. Hamid, R., Kilger, E., Willem, M., Vassallo, N., Kostka, M., Bornhovd, C., Reichert, A. S., Kretzschmar, H. A., Haass, C. and Herms, J. (2007) Amyloid precursor protein intracellular domain modulates cellular calcium homeostasis and ATP content. J. Neurochem. 102, 1264-1275. https://doi.org/10.1111/j.1471-4159.2007.04627.x
  78. Abe, M., Umehara, F., Kubota, R., Moritoyo, T., Izumo, S. and Osame, M. (1999) Activation of macrophages microglia with the calcium-binding proteins MRP14 and MRP8 is related to the lesional activities in the spinal cord of HTLV-I associated myelopathy. J. Neurol. 246, 358-364. https://doi.org/10.1007/s004150050363
  79. Gebhardt, C., Nemeth, J., Angel, P. and Hess, J. (2006) S100A8 and S100A9 in inflammation and cancer. Biochem. Pharmacol. 72, 1622-1631. https://doi.org/10.1016/j.bcp.2006.05.017
  80. Sondag, C. M. and Combs, C. K. (2004) Amyloid precursor protein mediates proinflammatory activation of monocytic lineage cells. J. Biol. Chem. 279, 14456-14463. https://doi.org/10.1074/jbc.M313747200
  81. Ghosal, K., Stathopoulos, A. and Pimplikar, S. W. (2010) APP intracellular domain impairs adult neurogenesis in transgenic mice by inducing neuroinflammation. PLoS One 5, e11866. https://doi.org/10.1371/journal.pone.0011866
  82. Lue, L. F., Brachova, L., Civin, W. H. and Rogers, J. (1996) Inflammation, A beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer's disease neurodegeneration. J. Neuropathol. Exp. Neurol. 55, 1083-1088. https://doi.org/10.1097/00005072-199655100-00008
  83. Hoozemans, J. J., Veerhuis, R., Rozemuller, J. M. and Eikelenboom, P. (2006) Neuroinflammation and regeneration in the early stages of Alzheimer's disease pathology. Int. J. Dev. Neurosci. 24, 157-165. https://doi.org/10.1016/j.ijdevneu.2005.11.001
  84. Raychaudhuri, M. and Mukhopadhyay, D. (2007) AICD and its adaptors - in search of new players. J. Alzheimers. Dis. 11, 343-358. https://doi.org/10.3233/JAD-2007-11311
  85. Ghosal, K., Vogt, D. L., Liang, M., Shen, Y., Lamb, B. T. and Pimplikar, S. W. (2009) Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc. Natl. Acad. Sci. U.S.A. 106, 18367-18372. https://doi.org/10.1073/pnas.0907652106
  86. Ghosal, K. and Pimplikar, S. W. (2010) Aging and excitotoxic stress exacerbate neural circuit reorganization in amyloid precursor protein intracellular domain transgenic mice. Neurobiol. Aging. (in press).
  87. Giliberto, L., Zhou, D., Weldon, R., Tamagno, E., De Luca, P., Tabaton, M. and D'Adamio, L. (2008) Evidence that the Amyloid beta Precursor Protein-intracellular domain lowers the stress threshold of neurons and has a "regulated" transcriptional role. Mol. Neurodegener. 3, 12. https://doi.org/10.1186/1750-1326-3-12
  88. Giliberto, L., d'Abramo, C., Acker, C. M., Davies, P. and D'Adamio, L. (2010) Transgenic expression of the amyloid-beta precursor protein-intracellular domain does not induce Alzheimer's Disease-like traits in vivo. PLoS One 5, e11609. https://doi.org/10.1371/journal.pone.0011609

Cited by

  1. Secretome proteins as candidate biomarkers for aggressive thyroid carcinomas vol.13, pp.5, 2013, https://doi.org/10.1002/pmic.201200356
  2. TDP-43 interaction with the intracellular domain of amyloid precursor protein induces p53-associated apoptosis vol.569, 2014, https://doi.org/10.1016/j.neulet.2014.03.075
  3. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells vol.217, pp.3-4, 2012, https://doi.org/10.1007/s00221-011-2870-1
  4. The Amyloid Precursor Protein Represses Expression of Acetylcholinesterase in Neuronal Cell Lines vol.288, pp.36, 2013, https://doi.org/10.1074/jbc.M113.461269
  5. Tau Protein Mediates APP Intracellular Domain (AICD)-Induced Alzheimer’s-Like Pathological Features in Mice vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0159435
  6. 1H, 13C, and 15N chemical shift assignments of the phosphotyrosine binding domain 2 (PTB2) of human FE65 vol.8, pp.1, 2014, https://doi.org/10.1007/s12104-013-9460-z
  7. The physiology of the β-amyloid precursor protein intracellular domain AICD vol.120, 2012, https://doi.org/10.1111/j.1471-4159.2011.07475.x
  8. Amyloid beta plaque: a culprit for neurodegeneration vol.116, pp.4, 2016, https://doi.org/10.1007/s13760-016-0639-9
  9. The Role of S100a9 in the Pathogenesis of Alzheimer’s Disease: The Therapeutic Effects of S100a9 Knockdown or Knockout vol.10, pp.1-4, 2012, https://doi.org/10.1159/000333781
  10. Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer’s disease vol.156, 2017, https://doi.org/10.1016/j.pneurobio.2017.05.005
  11. Apoptosis in Alzheimer’s Disease: An Understanding of the Physiology, Pathology and Therapeutic Avenues vol.39, pp.12, 2014, https://doi.org/10.1007/s11064-014-1454-4
  12. Mitochondrial Proteome Changes Correlating with β-Amyloid Accumulation vol.54, pp.3, 2017, https://doi.org/10.1007/s12035-015-9682-4
  13. Upregulation of PGC-1α expression by Alzheimer's disease-associated pathway: presenilin 1/amyloid precursor protein (APP)/intracellular domain of APP vol.13, pp.2, 2014, https://doi.org/10.1111/acel.12183
  14. Oxidative damage and amyloid-β metabolism in brain regions of the longest-lived rodents vol.92, pp.2, 2014, https://doi.org/10.1002/jnr.23320
  15. Amyloid precursor proteins are protective in Drosophila models of progressive neurodegeneration vol.46, pp.1, 2012, https://doi.org/10.1016/j.nbd.2011.12.047
  16. Is the Amyloid Hypothesis of Alzheimer's disease therapeutically relevant? vol.446, pp.2, 2012, https://doi.org/10.1042/BJ20120653
  17. p53, a Pivotal Effector of a Functional Cross-Talk Linking Presenilins and Pen-2 vol.10, pp.1-4, 2012, https://doi.org/10.1159/000332935
  18. Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation vol.18, pp.1, 2017, https://doi.org/10.3390/ijms18010184
  19. TDP-43: A new player on the AD field? vol.237, pp.1, 2012, https://doi.org/10.1016/j.expneurol.2012.05.018