• Title/Summary/Keyword: growth cycle

Search Result 1,760, Processing Time 0.023 seconds

Effect of Clitocybin A on the Proliferation of Dermal Papilla Cells (Clitocybin A의 모유두 세포증식 효능)

  • Kang, Jung-Il;Kim, Min-Kyoung;Yoo, Eun-Sook;Yoo, Ick-Dong;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.288-293
    • /
    • 2014
  • The present study was conducted to evaluate the hair growth-promoting effect of Clitocybin A from mushroom Clitocybe aurantiaca with dermal papilla cells (DPCs), which play important roles in the regulation of hair cycle. Clitocybin A significantly increased the proliferation of immortalized rat vibrissa DPCs. Flow cytometry analysis revealed that Clitocybin A promoted cell-cycle progression through G0/G1 to S phase in immortalized rat vibrissa DPCs. In addition, Clitocybin A increased the level of cell cycle proteins such as cyclin D1, phospho-pRB, and phospho-CDK2. To elucidate the molecular mechanisms of Clitocybin A on the proliferation of DPCs, we examined the activation of wnt/${\beta}$-catenin signaling which is known to regulate hair follicle development, differentiation and hair growth. Clitocybin A activated wnt/${\beta}$-catenin signaling via the increase of phospho(ser552)-${\beta}$-catenin, phospho(ser675)-${\beta}$-catenin and phospho(ser9)-$GSK3{\beta}$. Furthermore, Clitocybin A markedly increased the activation of extracellular signal-regulated kinase (ERK). These results suggest that the Clitocybin A may induce hair growth by proliferation of DPCs via cell-cycle progression as well as the activation of Wnt/${\beta}$-catenin signaling and ERK pathway.

Growth Inhibition and G2/M Phase Cell Cycle Arrest by 3,4,5-Trimethoxy-4'-bromo-cis-stilbene in Human Colon Cancer Cells

  • Heo, Yeon-Hoi;Min, Hye-Young;Kim, Sang-Hee;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.15 no.2
    • /
    • pp.95-101
    • /
    • 2007
  • Resveratrol (3,5,4’-trihydroxy-trans-stilbene), a naturally occurring phytoallexin abundant in grapes and several plants, has been shown to be active in inhibiting proliferation and inducing apoptosis in several human cancer cell lines. On the line of the biological activity of resveratrol, a variety of resveratrol analogs were synthesized and evaluated for their growth inhibitory effects against several human cancer cell lines. In the present study, we found that one of the resveratrol analogs, 3,4,5-trimethoxy-4’-bromo-cis-stilbene, markedly suppressed human colon cancer cell proliferation (EC$_{50}$ = 0.01 ${\mu}$g/ml), and the inhibitory activity was superior to its corresponding trans-isomer (EC$_{50}$ = 1.6 ${\mu}$g/ml) and resveratrol (EC$_{50}$ = 18.7 ${\mu}$g/ml). Prompted by the strong growth inhibitory activity in cultured human colon cancer cells (Col2), we investigated its mechanism of action. 3,4,5-Trimethoxy-4’-bromo-cis-stilbene induced arrest of cell cycle progression at G2/M phase and increased at sub-G1 phase DNA contents of the cell cycle in a time- and dose-dependent manner. Colony formation was also inhibited in a dose-dependent manner, indicating the inhibitory activity of the compound on cell proliferation. Moreover, the morphological changes and condensation of the cellular DNA by the treatment of the compound were well correlated with the induction of apoptosis. These data suggest the potential of 3,4,5-trimethoxy-4’-bromo-cis-stilbene might serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and inducing apoptosis for the human colon cancer cells.

Effects of Rhus verniciflua Stokes Extract on Cell Viability, Cell Cycle Progression and Apoptosis of AGS Cell (건칠(乾漆)이 위암세포의 활성, 세포사멸 및 세포주기관련 유전자 발현에 미치는 영향)

  • An, Jin-Yeong;Ko, Seong-Gyu;Ko, Heung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.701-709
    • /
    • 2006
  • The Rhus verniciflua Stokes (乾漆-RVS) has been used in traditional East Asia medicine for the therapy of gastritis, stomach cancer, although the mechanism for the biological activity is unclear. In the present study aims to investigate RVS extract contributes to growth inhibitory effect and it's the molecular mechanism on the human gastric cancer cells. AGS (gastric cancer cells) and RIEI (normal cells) were treated to different concentrations and periods of RVS extract $(10{\;}{\sim{{\;}100{\;}ug/mil)$. Growth inhibitory effect was analyzed by measuring FACS study and MTS assay. Cell cycle inhibition was confirmed by measuring CDK2 kinase activity by immunoprecipitation and kinase assay. And apoptosis was confirmed by surveying caspase cascades activation using a pan caspase inhibitor Exposure to RVS extract (50 ug/mll) resulted in a synergistic inhibitory effect on cell growth in AGS cells. Growth inhibition was related with the inhibition of proliferation and induction of apoptosis. The extract induces Gl -cell cycle arrest through the regulation of cyclins, the induction of p27kip1, and the decrease CDK2 kinase activity. And upregulated p27kip1 level is caused by protein stability increment by the reduction of S-phase kinase-associated protein 2 (Skp2), a key molecule related with p27kip1 ubiquitination and degradation, and do novo protein synthesis. Besides, 乾漆 extract induces apoptosis through the expression of Bax, poly(ADP-ribose) polymerase (PARP) and activation of caspase-3. RVS extract induces Gl -cell cycle arrest via accumulation of p27kip1 and apoptosis in human gastric cancer cells but not in normal cells, therefore we suggest that the extract can be used as a novel class of anti-cancer drugs.

NADPH oxidase inhibitor diphenyleneiodonium induces p53 expression and cell cycle arrest in several cancer cell lines (NADPH oxidase 저해제인 diphenyleneiodonium의 p53 발현 및 암세포의 성장억제에 대한 연구)

  • Jo, Hong-Jae;Kim, Kang-Mi;Song, Ju-Dong;Park, Young-Chul
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.778-782
    • /
    • 2007
  • The Diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the cell growth progression of human colon cancer cells HCT-116 (wild-type p53), HT-29 (p53 mutant) and human breast cancer cells MCF-7 (wild-type p53). DPI treatment in cancer cells evoked a dose- and time-dependent growth inhibition, and also induced the cell cycle arrest in C2/M phase. The peak of cell population arrested in C2/M phase was observed at12 hr after treatment of DPI. In addition, DPI significantly induced the expression of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest, at 6 hr in DPI-stimulated cells. However, a catechol apocynin, which inhibits the assembly of NADPH oxidase, did not induce p53 expression. This suggest that p53 expression induced by DPI is not associated with the inhibition of NADPH oxidase. In conclusion, we suggest that DPI induces the expression of wild-type p53 by ROS-in-dependent mechanism in several cancer cells, and upregulated p53 may be involved in regulatory mechanisms for growth inhibition and cell cycle arrest at C2/M phase in DPI-stimulated cells.

Role of Intracellular Calcium in Clotrimazole-Induced Alteration of Cell Cycle Inhibitors, p53 and p27, in HT29 Human Colon Adenocarcinoma Cells

  • Thapa, Dinesh;Kwon, Jun-Bum;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • Clotrimazole (CLT), a potent antifungal drug, is known to inhibit tumor cell proliferation. In the present study, we examined the role of intracellular $Ca^{2+}$ in CLT-induced cell cycle arrest of colon adenocarcinoma HT29 cells. CLT inhibited growth of HT29 cells in a concentration-dependent manner, which was associated with inhibition of cell cycle progression at the G(1)-S phase transition and an increase in the expression of cell cycle inhibitor proteins p27 and p53. CLT also suppressed the $Ca^{2+}$ overload by A23187, a calcium ionophore, suggesting its role in modulation of intracellular $Ca^{2+}$ concentration in HT29 cells. The simultaneous application of CLT and A23187 with addition of $CaCl_2$ (1mM) to the medium significantly reversed CLT-induced p27 and p53 protein level increase and growth suppression. Our results suggest that CLT induces cell cycle arrest of colon adenocarcinoma HT29 cells via induction of p27 and p53, which may, at least in part, be mediated by alteration of intracellular $Ca^{2+}$ level.

A Study on Life-Cycle Categorical Variables of Quasi-Market SOC Public Enterprise (공기업 수명주기 분류변수 도출을 위한 기초연구 : 준시장형 SOC 공기업을 대상으로)

  • Park, Dong Sun;Shin, Wan Seon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.168-176
    • /
    • 2014
  • The enterprise life cycle derived from the product life cycle consists of introduction, growth, maturity and decline. The enterprise tries to reach the growth stage early and stay at the maturity stage stably through expanding its businesses and investing for the new technology. The public enterprise is not different but its life cycle is more prone to be affected by the national development and policy. A typical example can be found in the case of the quasi market SOC public enterprise which spends massive amount of fund to provide social infrastructure. After the fulfillment of its mandated mission it is exposed to the pressure of a merger or a closure usually because large portion of the debt is directly linked to the national financial stability and credit ratings. This research is focused on the variables that influence the life cycle of the quasi market SOC public Enterprise for its future competitiveness is in connection with its normalization, advancement and rationalization. In this respect, categorical variables system centering on public characteristics and profitability drew eight categorical variables such as policy outcomes, public benefit, finance and business values etc.

Analysis of the Corporate Life Cycle using the Gompertz Model Focused on Korean Pharmaceutical Longevity Companies

  • Kyu-Jin, CHOI;Kang-Sun, LEE;Sung-Wook, KANG;Dae-Myeong, CHO
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.1
    • /
    • pp.31-44
    • /
    • 2023
  • Purpose: This study aims to figure out the characteristics of corporate life cycle and resource input in terms of the sustainability diagnosis of pharmaceutical companies in Korea. Research design, data, and methodology: Using the Gompertz model under the assumption that companies have finite resources, this study tries quantitative interpretation of life cycle and resource input pattern for longevity companies with 25 years of experience among 158 pharmaceutical companies listed on Korean stock market based on maturity of revenue. Results: The study found revenue maturity through Gompertz model was statistically correlated with enterprise value. According to the life cycle analysis, more than 95% of 59 pharmaceutical companies were in the growth and maturity phase and have an average life cycle of 88 years and an average remaining life of 52 years. Regarding maturity profile of resource input, maturity of employees was generally high more than 60% and this meant there was jobless growth in Korean pharmaceutical industry. Conclusion: This study demonstrated there is a high statistical correlation between the maturity of a company's resource input and its revenue and enterprise value. It is believed that these results could be utilized as a basis for high fidelity function that predict revenue and enterprise value based on resource input information.

Chloramphenicol Arrests Transition of Cell Cycle and Induces Apoptotic Cell Death in Myelogenous Leukemia Cells

  • KANG KI YOUNG;CHOI CHUL HEE;OH JAE YOUNG;KIM HYUN;KWEON GI RYANG;LEE JE CHUL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.913-918
    • /
    • 2005
  • Chloramphenicol is a broad-spectrum antimicrobial agent against Gram (+) and Gram (-) bacteria. Its clinical application has recently been limited, due to severe side effects such as bone marrow suppression and aplastic anemia. In the present study, the cytotoxic effects of chloramphenicol were investigated in vitro using chronic myelogenous leukemia K562 cells. Chloramphenicol inhibited the growth of K562 cells in a dose-dependent manner, but their growth was restored after the cessation of chloramphenicol, indicating reversible cytotoxic effects. The expression of cell cycle regulatory molecules, including E2F-1 and cyclin D1, was decreased at the translational and/or transcriptional level after being treated with a therapeutic blood level ($20{\mu}g/ml$) of chloramphenicol. Chloramphenicol also induced apoptotic cell death through a caspase-dependent pathway, which was verified by Western blot analysis and the enzymatic activity of caspase-3. These results demonstrated that chloramphenicol inhibited the cell growth through arresting the transition of the cell cycle, and induced apoptotic cell death through a caspase-dependent pathway at therapeutic concentrations.

Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways

  • Hwang, Yu-Jin;Lee, Eun-Ju;Kim, Haeng-Ran;Hwang, Kyung-A
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.611-616
    • /
    • 2013
  • Luteolin-7-O-glucoside (LUT7G), a flavone subclass of flavonoids, has been found to increase anti-oxidant and anti-inflammatory activity, as well as cytotoxic effects. However, the mechanism of how LUT7G induces apoptosis and regulates cell cycles remains poorly understood. In this study, we examined the effects of LUT7G on the growth inhibition of tumors, cell cycle arrest, induction of ROS generation, and the involved signaling pathway in human hepatocarcinoma HepG2 cells. The proliferation of HepG2 cells was decreased by LUT7G in a dose-dependent manner. The growth inhibition was due primarily to the G2/M phase arrest and ROS generation. Moreover, the phosphorylation of JNK was increased by LUT7G. These results suggest that the anti-proliferative effect of LUT7G on HepG2 is associated with G2/M phase cell cycle arrest by JNK activation.

A Study on the Prediction of Fatigue Damage in 2024-T3 Aluminium Alloy Using Neural Networks (신경회로망을 이용한 AI 2024-T3합금의 피로손상예측에 관한 연구)

  • Cho, Seok-Swoo;Jang, Deuk-Yul;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.168-177
    • /
    • 1999
  • Fatigue damage is the phenomena which is accumulated gradually with loading cycle in material. It is represented by fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$. Fracture mechanical parameters estimating large crack growth behavior can calculate quantitative amount of fatigue crack growth resistance in engineering material. But fatigue damage has influence on various load, material and environment. Therefore, In this study, we propose that artificial intelligent fatigue damage model can predicts fatigue crack growth rate da/dN and fatigue life ratio $N/N_{f}$ simultaneously using fracture mechanical and nondestructive parameters.

  • PDF