• Title/Summary/Keyword: grouting zone

Search Result 62, Processing Time 0.027 seconds

Stability Evaluation for a riverbed tunnel in the Han River at the Fault Zone Crossing (한강 단층대를 통과하는 하저터널의 안정성 확보에 관한 연구)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.225-231
    • /
    • 2001
  • When building tunnels beneath riverbeds where very large quantities of groundwater inflow exist, added to high water head the soil supporting conditions are very poor because the soil consists of sand and silt, etc. It is necessary to have grouting and mini pipe roof installed in the region for ground reinforcement to decrease permeability. According to this result of horizontal boring and laboratory soil testing, ground reinforcement was achieved by L.W grouting for range of 3.0 times the tunnel radius, to increase stability of the tunnel we used the ling-cut method, 0.8m for one step excavation, shotcrete with 25cm thick, steel lib with H-$125{\times}125$. and a temporary shotcrete invert 20cm thick was installed to prevent deformation of the tunnel.

  • PDF

A Study on Improvement Effects on Fractured Rock Mass by Consolidation Grouting in Tunnel (터널 내 파쇄지반 개량을 위한 압밀그라우팅 성능 평가 연구)

  • 정교철;서용석
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.189-202
    • /
    • 2002
  • In this study we carried out the in situ test in order to explore the grouting effects of fracture zone on mechanical properties and permeability in tunnel. After consolidation grouting the rock mass averaged 2.30 in the modulus of deformation and 2.49 in the modulus of elasticity. The results obtained through this study are as follows. (1) With advance of the injection steps, the total cement take shows uniformity of the rock mass. (2) After consolidation grouting the improvement of permeability can be identified by reduction of Lugeon values. (3) Grouting injection can improve deformability and strength of rock mass. (4) More mechanical improvement appears for more deformable rock mass before grouting injection.

Ground Behavior and Reinforcing Methods of NATM Tunnel through Deep Weathered Zone (대심도 풍화대층에서 NATM 터널의 지반거동 및 보강방법)

  • Chun, Byung-Sik;Song, Seung-Hoon;An, Jung-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.87-95
    • /
    • 2007
  • This study analyzed ground settlement and ground stress depending on tunnel excavation and the ground reinforcing grouting methods for double line road tunnel through deep weathered zone. Diameter of double line road tunnel was approximately 12m and umbrella arch method and side wall reinforcing grouting were applied. The ring-cut split excavation method and CD-cut excavation method for excavation method were applied. Analyses of failure rate and vertical stress ratio show that the tunnel for which the height of the cover (H) was higher than four times the diameter, can be considered a deep tunnel. Comparisons of various excavation and ground reinforcement methods showed that CD-cut method results in lower surface and crown settlement, and lower failure rate than that obtained by Ring-cut split method. In addition, the side wall reinforcing grouting resulted in reduction of tunnel displacement and settlement.

An Experimental Study on Grouting Effect for Ground Reinforcement (지반보강 그라우팅 효과에 관한 실험적 연구)

  • Park, Yong-Won;Lee, Goo-Young;Park, Jong-Ho;Hong, Sung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.399-406
    • /
    • 2004
  • This paper is experimental study on the effect of improved soil strength which was grouted by pressure grouting method for prevent collapse the tunnel's face during excavate tunnel. This study performs to investigate the proper grouting pressure and grouting method through pressure grouting laboratory model tests using loose dense sandy soil using specially designed and fabricated device($180cm{\times}220cm{\times}300cm$) under changing condition of injection in this test The investigation is carried out through measuring the size and shape of grout bulb, elastic modulus by pressure-meter test Elastic modulus was estimated using relation stress with strain which is result the uni-direction compressive strength test for cured grouted bulb under water during 28days. From these test results, the amount of increased elastic modulus of grouted zone was suggested.

  • PDF

Improvement Method for Preventing Groundwater Pollution in Jeju Island (제주도 지하수관정의 오염저감방안)

  • Yang, Sung-Kee;Han, Sang-Cheol
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.735-743
    • /
    • 2007
  • A grouting method is the way to effectively prevent pollutants from spreading into the ground during the digging process of groundwater. This study, based on the comparative study of grouting methods being generally accepted, suggests various construction methods which are suitable for geological structure as follows: In Jeju Island, it is very likely that rocks may fall in shuttered zones such as cracks, joints, scoria layers, and clinker layers. For this reason, it is recommended that materials be injected from the bottom toward the top, not from the top to the bottom. In the case where the amount of injected materials become too large in the areas of cracks or joints because of high level of permeability coefficient, grouting materials which smeared into surrounding areas may cause unwanted cut in the aquifer of the bottom level. To avoid this, the amount of water should be reduced from the typical water-cement ratio of 1:2, and grouting materials with larger grading should be used. If the deep excavation of ground is made in Jeju Island, it is likely to have lots of voids because of geological characteristics. Based on the results of this research, it is found that to construct interior casing, the centralizer should be attached to the casing to prevent the casing from being in contact with the counter fort. The grouting in Jeju Island should be thicker than usual. To avoid over-use of grouting materials, to prevent grouting in more than necessary zone, and to facilitate grouting of void areas, the flexible selection of materials is required. And, to exactly figure out the interior of dug well, an examination through CCTV should necessarily be performed when grouting work is in progress.

Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement

  • Shao, Xiaokang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Qi, Weiqiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.509-522
    • /
    • 2022
  • Tail-grouting is an effective measure in shield engineering for filling the gap at the shield tail to reduce ground deformation. However, the gap-filling ratio affects the value of the gap parameters, leading to different surface settlements. It is impossible to adjust the fill ratio indiscriminately to study its effect, because the allowable adjustment range of the grouting quantity is limited to ensure construction site safety. In this study, taking the shield tunnel section between Chaoyanggang Station and Shilihe Station of Beijing Metro Line 17 as an example, the correlation between the tail-grouting parameter and the surface settlement is investigated and the optimal grouting quantity is evaluated. This site is suitable for conducting field tests to reduce the tail-grouting quantity of shield tunneling over a large range. In addition, the shield tunneling under different grouting parameters was simulated. Furthermore, we analyzed the evolution law of the surface settlement under different grouting parameters and obtained the difference in the settlement parameters for each construction stage. The results obtained indicate that the characteristics of the grout affect the development of the surface settlement. Therefore, reducing the setting time or increasing the initial strength of the grout could effectively suppress the development of surface subsidence. As the fill ratio decreases, the loose zone of the soil above the tunnel expands, and the soil deformation is easily transmitted to the surface. Meanwhile, owing to insufficient grout support, the lateral pressure on the tunnel segments is significantly reduced, and the segment moves considerably after being removed from the shield tail.

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Numerical Analysis of the Change in Groundwater System with Tunnel Excavation in Discontinuous Rock Mass (불연속 암반에서의 터널굴착에 따른 지하수체계 변화에 대한 수치해석적 연구)

  • Park, Jung-Wook;Son, Bong-Ki;Lee, Chung-In;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.44-57
    • /
    • 2008
  • In this study, a 2D finite-element analysis, using the SEEP/W program, was carried out to estimate the amount of groundwater flawing into a tunnel, as well as the groundwater tables around wetland areas during and after a tunnel excavation through rock mass. Four sites along the Wonhyo-tunnel in Cheonseong Mountain (Gyeongnam, Korea) were analysed, where the model damain of the tunnel included both wetland and fault zone. The anisotropy of the hydraulic conductivities of the rock mass was calculated using the DFN model, and then used as an input parameter for the cantinuum model. Parametric study on the influencing factors was perofrmed to minimize uncertainties in the hydraulic properties. Moreover, the volumetric water content and hydraulic conductivity functions were applied ta the model to reflect the ability of a medium ta store and transport water under both saturated and unsaturated conditions. The conductivity of fault zone was assumed ta be $10^{-5}m/sec\;or\;10^{-6}m/sec$ and the conductivity of grouting zone was assumed as 1/10, 1/50 or 1/100 of the conductivity of rock mass. Totally $6{\sim}8$ cases of transient flow simulation were peformed at each site. The hydraulic conductivities of fault zone showed a significant influence on groundwater inflow when the fault zone crossed the tunnel. Also, groundwater table around wetland maintained in case that the hydraulic conductivity of grouting zone was reduced ta be less than 1/50 of the hydraulic conductivity of rock mass.