• Title/Summary/Keyword: grouting effects

Search Result 100, Processing Time 0.021 seconds

A Case study on the construction of a long tunnel in the youngdong railroad (Mt. Dongbaek-Dokye) (영동선 동백산-도계간 장대터널 시공사례 연구)

  • Kim, Yong-Il;Yoon, Young-Hoon;Cho, Sang-Kook;Yang, Jong-Hwa;Lee, Nai-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.155-165
    • /
    • 2002
  • This paper presents a case study on the construction of a long tunnel named as "Solan tunnel", which connects between Mt. Dongbaek station and Dokye station in the Youngdong Railroad. The tunnel will be the longest tunnel with length of 16.4 km in Korea when completed. The tunnel site is located in a complex geological region with faults, cavities and coal measures. In construction of adit No. 2, geophysical investigation methods such as electrical resistivity method and GPR(Ground Penetration Radar) were used to detect faults, cavities and coal measures in advance with some success. The geophysical investigation results and in-situ boring data were used as feedback to improve tunnel reinforcement design. Also, the tube umbrellas of grouted steel pipes were found to have a good reinforcement and grouting effects in zones of faults, cavities. In zones of coal measures, swellex rockbolts with mortar grouting were verified as successful.

  • PDF

Ground investigation using Complex Resistivity Method (복소전기비저항법을 이용한 지반조사)

  • Son, Jeong-Sul;Kim, Jung-Ho;Park, Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.119-124
    • /
    • 2008
  • Due to the recent development of instruments which enabled the measurements of subtle IP effect in the ground and analysis algorithms, complex resistivity (CR) method was expanding its application to various field. In this study, we applied the CR method to the test site where the ground reinforcement had been done by injecting the cement mortar for investigating the effect of ground reinforcement. For this site, resistivity monitoring and tomography survey was carried out while the ground reinforcement had been made by the grouting. From the result, the anomalous region that was shown on the result of resistivity 4D monitoring was coincident with those of phase section in the CR method, because the cement grouting material had the strong IP effects. It might be expected that the CR method should be very powerful surveying tool for the similar purpose.

  • PDF

Solidification of uranium mill tailings by MBS-MICP and environmental implications

  • Niu, Qianjin;Li, Chunguang;Liu, Zhenzhong;Li, Yongmei;Meng, Shuo;He, Xinqi;Liu, Xinfeng;Wang, Wenji;He, Meijiao;Yang, Xiaolei;Liu, Qi;Liu, Longcheng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3631-3640
    • /
    • 2022
  • Uranium mill tailing ponds (UMTPs) are risk source of debris flow and a critical source of environmental U and Rn pollution. The technology of microbial induced calcium carbonate precipitation (MICP) has been extensively studied on reinforcement of UMTs, while little attention has been paid to the effects of MICP on U & Rn release, especially when incorporation of metakaolin and bacillus subtilis (MBS). In this study, the reinforcement and U & Rn immobilization role of MBS -MICP solidification in different grouting cycle for uranium mill tailings (UMTs) was comprehensively investigated. The results showed that under the action of about 166.7 g/L metakaolin and ~50% bacillus subtilis, the solidification cycle of MICP was shortened by 50%, the solidified bodies became brittle, and the axial stress increased by up to 7.9%, and U immobilization rates and Rn exhalation rates decrease by 12.6% and 0.8%, respectively. Therefore, the incorporation of MBS can enhance the triaxial compressive strength and improve the immobilization capacity of U and Rn of the UMTs bodies solidified during MICP, due to the reduction of pore volume and surface area, the formation of more crystals general gypsum and gismondine, as well as the enhancing of coprecipitation and encapsulation capacity.

Performance of Shotcrete Lining due to Tunneling and Groundwater Interaction Using a 3D Stress-pore Pressure Coupled Analysis (응력-간극수압 3차원 연계해석을 이용한 터널시공과 지하수의 상호작용으로 인한 라이닝 거동특성 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.465-474
    • /
    • 2005
  • This paper presents the interaction effect between tunneling and groundwater on tunnel behavior. A parametric study is then conducted on the various tunneling situations frequently encountered in Seoul area using a 3D stress-pore pressure coupled finite-element model with emphasis on the effects of ground and lining permeabilities. It is shown that the ground and lining responses are significantly influenced by the relative permeability between the ground and the lining, and that the circumferential pre-grouting is effective in minimizing the tunnelling and groundwater interaction.

  • PDF

Thermal Property Measurement of Bentonite-Based Grouts and Their Effects on Design Length of Vertical Ground Heat Exchanger (벤토나이트 그라우트의 열물성 측정 및 열물성이 수직 지중열교환기 설계 길이에 미치는 영향)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In a ground-source heat pump (GSHP) system, a vertical ground heat exchanger (GHE) is widely accepted due to a higher thermal performance. In the vertical GHE, grout (also called grouting material) plays an important role in the heat transfer performance and the initial installation cost of the GHE. Bentonite-based grout has been used in practice because of its high swelling potential and low hydraulic conductivity. This study evaluated the thermo-physical properties of the bentonite-based grouts through lab-scale measurements. In addition, we conducted performance simulation to analyze the effect of mixed ratio of grouts on the design length and thermal performance of the vertical GHE. The simulation results show that thermally-enhanced grouts improve the heat transfer performance of the vertical GHE and thus reduce the design length of GHE pipe.

Deformation analyses during subway shield excavation considering stiffness influences of underground structures

  • Zhang, Zhi-guo;Zhao, Qi-hua;Zhang, Meng-xi
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.117-139
    • /
    • 2016
  • Previous studies for soil movements induced by tunneling have primarily focused on the free soil displacements. However, the stiffness of existing structures is expected to alter tunneling-induced ground movements, the sheltering influences for underground structures should be included. Furthermore, minimal attention has been given to the settings for the shield machine's operation parameters during the process of tunnels crossing above and below existing tunnels. Based on the Shanghai railway project, the soil movements induced by an earth pressure balance (EPB) shield considering the sheltering effects of existing tunnels are presented by the simplified theoretical method, the three-dimensional finite element (3D FE) simulation method, and the in-situ monitoring method. The deformation prediction of existing tunnels during complex traversing process is also presented. In addition, the deformation controlling safety measurements are carried out simultaneously to obtain the settings for the shield propulsion parameters, including earth pressure for cutting open, synchronized grouting, propulsion speed, and cutter head torque. It appears that the sheltering effects of underground structures have a great influence on ground movements caused by tunneling. The error obtained by the previous simplified methods based on the free soil displacements cannot be dismissed when encountering many existing structures.

Stability Estimation Method for Pillar Considering the Reinforcement Method during Twin-Tunnel Excavation (병설터널 굴착시 필라부의 보강을 고려한 안정성 평가기법)

  • Jang, Bu-Sik;Hwang, Jung-Soon;Ryu, June-Won;Lee, Eung-Ki;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.980-987
    • /
    • 2006
  • Recently, twin-tunnel is often designed considering the aspects of disaster prevention and economic reasons. However, the design cases and the studies are relatively insufficient. By the twin-tunnel excavation, deviate stresses of pillar between tunnels are increased and the increased stresses induce the instability of the twin-tunnel. In this study, numerical analyses about the twin-tunnel behaviour are conducted while varying ground strength, width of pillar and depth of earth cover and a series of regression analyses are carried out by using the results of numerical analyses for the twin-tunnel. Based on the numerical analyses, an estimation method of derived stresses is suggested though the regression analyses. Also, based on the results of regression analyses, an quantitative estimation method considering the reinforcement effects is also suggested. Then various parametric studies are conducted to be considered the reinforcement type and various design parameters. Finally, the efficiency of the suggested method is verified through the results of parametric studies.

  • PDF

A Study on Application and Stability Analysis of Spiral Pipe Nailing System Using Simplified Trial Wedge Method (간편 시행쐐기법을 이용한 스파이럴 파이프 네일링 시스템의 안정해석 및 적용성에 관한 연구)

  • Kim, Hong-Taek;Park, Si-Sam;Park, Sung-Chul;Jung, Sung-Pill
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.651-658
    • /
    • 2004
  • In this study, we introduced the spiral pipe nailing system (refer as SPN system) with self drilling method, can apply to ground which is hard to keep shape of bore hole, and performed limit equilibrium analysis with simplilied trial wedge method while length ratio and bond ratio were altered to evaluate slope stability considered of tensile strength and bending stiffness. A newly soil nailing system named as the SPN system is respected to reduce displacement of nail and increase global slope stability. And effects of various factors related to the design of the SPN system, such as the type of drilling method and the bit, are examined throughout a series of the displacement-controlled field pull-out tests. 6 displacement-controlled field pull-out tests are performed in the present study and the volume of grouting arc also evaluated based on the measurements. In addition, short-term characteristics of pull-out deformations of the newly proposed SPN system are analyzed and compared with those of the general soil nailing system by carrying out the displacement-controlled field pull-out tests.

  • PDF

Performance Evaluation of Large Borehole Ground-Loop Heat Exchanger (저심도 대구경 지중열교환기의 설치조건에 따른 성능 연구)

  • Yoo, Gyu-Sang;Park, Il-Mun;Choi, Jae-Ho;Shin, Hyun-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.58-63
    • /
    • 2009
  • A ground-loop heat exchanger for the ground source heat pump system is the core equipment determining the thermal performance and initial cost of the system. The size and performance of the heat exchanger is highly dependent on the ground thermal properties - the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. Nowadays, precast concrete piles using steel reinforced precast concrete piles - energy piles - are used to reduce the installing cost of the ground-loop heat exchanger. We were carried out some tests to investigate the effects of some parameters such as borehole length, grouting materials and U-tube configuration of the energy piles. 4 concrete piles, each measuring $250mm{\sim}400mm$ in diameter and approx. 10m in length, and rigged with single spiral and 3 U-tube loop of $16mm{\times}2.3mm$ PB piping. The thermal response tests were conducted using a testing device for 4-different ground-loop heat exchangers. During the heating period, the energy piles absorb the heat of 0.89kW to 1.37kW.

  • PDF

Model Test of Lining for Estimation of Tunnel Soundness (터널 건전도 평가를 위한 라이닝 모델실험)

  • Kim, Young Keun
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.59-71
    • /
    • 1999
  • Recently, many deformations in tunnel such as crack and leakage were occulted. Specially, the defects of tunnel lining have been a serious problem in safety and stability many repair works for maintenance in tunnel have been carried out. Therefore, it is necessary to estimate the structural cracking for countermeasure in deformed tunnel and to investigate on the characteristics of lining system and the soundness of tunnel. In this study model tests for tunnel lining were carried out using test apparatus and centrifuge, In the direct loading test, the prototype was Kyungbu high-speed railway tunnel and the scale is 1/10, and lining models were made of concrete. Test conditions included load conditions such as direction, shape and type, lining conditions such as single and double lining, thickness, and reinforcement. In centrifuge model test, the prototype was Seoul subway tunnel and the scale is 1/100, and lining models were made of aluminum and hydrostone. Test conditions included tunnel defects such as thickness shortage. behind cavity and longitudinal cracks, reinforcement methods such as epoxy, grouting and carbon sheet. From these model tests , the characteristics of deformation and failure for tunnel lining were estimated, and the structural behaviors of deformed lining and the effects of repair and reinforcement for tunnel lining were researched.

  • PDF