• Title/Summary/Keyword: grouted rock bolts

Search Result 12, Processing Time 0.025 seconds

Improving support performances of cone bolts by a new grout additive and energy absorber

  • Komurlu, Eren
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • The cone bolts with expanded front ends supply improved anchoring performances and increase energy absorbing capacities due to ploughing in the grouted drills. Within this study, use of a novel energy absorber for the cone bolt heads were investigated to assess its design in terms of supplying high support performances. Additionally, different grout material designs were tested to investigate whether the energy absorption capacities of the rock bolts can be improved using a silicone based thermoset polymer (STP) additive. To determine load bearing and energy absorption capacities, a series of deformation controlled pull-out tests were carried out by using bolt samples grouted in rock blocks. According to the results obtained from this study, maximum load bearing capacities of cone bolts are similar and mostly depend on the steel material strength, whereas the energy absorption capacity was determined to significantly vary in accordance with the displacement limits of the shanks. As a result of using STP additive and new polyamide absorber rings, displacement limits without the steel failure increase. The STP additive was found to improve the energy absorption capacities of grouted cone bolts. The absorber rings designed within this study were also assessed to be highly effective and able to double up the energy absorption capacities of the cone bolts.

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

Stress distribution in a passive fully grouted rock bolts

  • Karanam U. M. Rao;Dasyapu S. K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.122-128
    • /
    • 2003
  • Rock bolts are widely used as a supplementary roof support system in hard-rock mining since a long time. Since the performance of fully grouted passive bolts depends on bond strength, in the present investigation extensive laboratory pull-out as well as push-out tests were conducted varying the bolt diameter, length and cement-water mixing ratios of grout. The load-displacement curves were developed and were verified with the numerical results obtained from finite element analysis using ALGOR software. Numerical models were validated for push-out tests and a detailed analysis was carried out to know the displacement, stress, strain distribution along the bolt.

  • PDF

Resisting Behavior of Fully-Grouted Rock Bolts with Compressible Spacers (압축성 간격재를 설치한 전면접착식 볼트의 인발저항 거동)

  • Hwang, Yong-Sub;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.377-385
    • /
    • 2011
  • In order to prove the applicability of rock bolts with compressible spacers, laboratory model tests and large scale model tests were conducted. Laboratory model tests were performed in various distance of compressible spacers to determine the optimal distance of compressible spacers. The optimal distance of compressible spacers was found that is 1/4 of rock bolts unit length. Large scale model tests that the size was 0.6 m (diameter) ${\times}$ 4.45 m (length) were conducted. Test results showed that pull out resistance could be increased up to 15% larger than that of unused case by using compressible spacers.

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Anchorage mechanism and pullout resistance of rock bolt in water-bearing rocks

  • Kim, Ho-Jong;Kim, Kang-Hyun;Kim, Hong-Moon;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.841-849
    • /
    • 2018
  • The purpose of a rock bolt is to improve the mechanical performance of a jointed-rock mass. The performance of a rock bolt is generally evaluated by conducting a field pullout test, as the analytical or numerical evaluation of the rock bolt behavior still remains difficult. In this study, wide range of field test was performed to investigate the pullout resistance of rock bolts considering influencing factors such as the rock type, water bearing conditions, rock bolt type and length. The test results showed that the fully grouted rock bolt (FGR) in water-bearing rocks can be inadequate to provide the required pullout resistance, meanwhile the inflated steel tube rock bolt (ISR) satisfied required pullout resistance, even immediately after installation in water-bearing conditions. The ISR was particularly effective when the water inflow into a drill hole is greater than 1.0 l/min. The effect of the rock bolt failure on the tunnel stability was investigated through numerical analysis. The results show that the contribution of the rock bolt to the overall stability of the tunnel was not significant. However, it is found that the rock bolt can effectively reinforce the jointed-rock mass and reduce the possibility of local collapses of rocks, thus the importance of the rock bolt should not be overlooked, regardless of the overall stability.

Permanent Support for Tunnels using NMT

  • Barton, Nick
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.1-26
    • /
    • 1995
  • Key aspects of the Norwegian Method of Tunnelling (NMT) are reviewed. These include a predictive method of support design using the six-parameter Q-system of rock mass characterisation. The rock mass rating or Q-value is updated during tunnel driving. The designed tunnel support generally consists of wet process, steel fibre reinforced shotcrete combined with fully grouted, untensioned rock bolts, Even in poor rock conditions S(fr) + B usually acts as the final rock reinforcement and tunnel lining. Since it is a drained lining, it is very economic compared to cast concrete with membranes. Light, free-standing steel liners are used to prevent water affecting the runnel environment. Rock mass conditions, and hence lining design and cost estimation can be assessed by careful use of seismic surveys. Relationships between the P-wave velocity, the rock mass deformation modulus and the Q-value have recently been established, where tunnel depth, rock porosity and the uniaxial compression strength of the rock are important variables. The rock mass modulus estimate, and simple index testing of the joints, provide the key input which joints are discretely represented (either in two dimensions with the UDEC code or in three dimensions with the 3DEC code) is generally favoured compared to continuum analysis. The latter may give a misleading impression of uniformity and deformations tend to be understimated. Q-system NMT designs of S(fr) + B (fibre reinforced shotcrete and bolting) are numerically checked and adjustments made to bolt capacities and shotcrete thickness if overloading is evident around the modelled profile.

  • PDF

Rock bolt integrity evaluation using reflected and transmitted guided ultrasonic waves (유도초음파의 반사법과 투과법 비교를 통한 록볼트 건전도 평가)

  • Lee, Jong-Sub;Yu, Jung-Doung;Han, Shin-In;Bae, Myeong-Ho;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.42-50
    • /
    • 2008
  • To evaluate rock bolt integrity, destructive test such as pull-out test has been commonly carried out. This method is known as time consuming, expensive, and inaccurate procedure. To improve destructive method, non-destructive techniques using transmitted guided ultrasonic waves were suggested. Note for the transmission method, the source for the generation of ultrasonic waves should be installed during the rock bolt construction. The purpose of this study is to investigate the reflection method using reflected guided ultrasonic waves to evaluate the integrity of the rock bolt grouted, and to compare the results evaluated by the reflection and transmission methods. The guided waves are generated by PZT element and received by AE sensor. The measured signals are analyzed by the wavelet transform. The results show that the energy velocities of guided ultrasonic waves increase with the defect ratio in both transmission and reflection method. The reflection method produces the lower velocity in all defect ratio. This research demonstrates that the reflection method may be suitable and easer method for the field tests.

  • PDF

The Evaluation on Applicability of Leakage-prevented Sealing Packer Out of Grouted Rockbolt Hole (록볼트 그라우팅 시 역류방지용 밀봉 패커의 적용성 평가)

  • Yang, Taeseon;Kim, Jichang;Jeong, Jongki;Yoo, Dongho;Choi, HakYun;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.15-21
    • /
    • 2016
  • Nowadays, some studies have been performed for rockbolt method widely used in Korea. To make large slopes, tunnels or rock structures stable, supporting systems, such as anchor bolt, rock bolt which are developed recently, are commonly used. In this study, laboratory pullout tests were carried out to compare the characteristics of rock bolt that is most widely used with ones of rock bolt by newly developed circular model testers. Re-pullout test for the rock bolt in which loading and unloading cycles are repeated several times showed that the maximum pullout load is almost constant irrespective of the number of loading cycles, which may be due to no failure between rock bolt and filler that is filled with soils and concrete as a substitute. A development of rock bolt fillers as supporters using to protect people in tunnels and slopes is reviewed as a probable man-made hazard after excavation works. The functions of the grouted rock bolts associated with reinforcement effects also should be assessed in this study, which develop the sealing apparatus preventing from overflowing mortar out of a rock bolt hole for securing safety in the tunnel and slopes in order to secure stability named the sealing packer.

Numerical Analysis on the Performance Evaluation of Cablebolts as Tunnel Supports (터널 지보재로서 케이블볼트의 성능평가에 관한 수치해석적 연구)

  • Park, Yeon-Jun;Park, Joon-Hyoung
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.130-143
    • /
    • 2012
  • Cablebolts used to be employed as auxiliary supports where long or high capacity bolts are needed, but become competitive by the improvements in supportability and easiness in handling. Based on the test results obtained from various researches, the performance of the cablebolts was analyzed numerically while varying lengths and fixing conditions. The supporting effecte is assessed by monitoring displacements and stress taken place in shotcrete. When cablebolts are grouted without being tensioned, supporting effect was not as good as that of rockbolts. But, their supportability was good enough to substitute rockbolts if tensioned properly. Post grouting right after tensioning of the cablebolts shows reduction in supportability, but long term stability could be achieved without losing supportability if grouted when the bolt is far enough from the face. Further study is necessary including laboratory and in-situ tests under various conditions to use cablebolts as main support in tunnels.