• Title/Summary/Keyword: group method of data handling (GMDH)

Search Result 73, Processing Time 0.023 seconds

Neuro-Fuzzy Approaches to Ozone Prediction System (뉴로-퍼지 기법에 의한 오존농도 예측모델)

  • 김태헌;김성신;김인택;이종범;김신도;김용국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.616-628
    • /
    • 2000
  • In this paper, we present the modeling of the ozone prediction system using Neuro-Fuzzy approaches. The mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, the modeling of ozone prediction system has many problems and the results of prediction is not a good performance so far. The Dynamic Polynomial Neural Network(DPNN) which employs a typical algorithm of GMDH(Group Method of Data Handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system. The structure of the final model is compact and the computation speed to produce an output is faster than other modeling methods. In addition to DPNN, this paper also includes a Fuzzy Logic Method for modeling of ozone prediction system. The results of each modeling method and the performance of ozone prediction are presented. The proposed method shows that the prediction to the ozone concentration based upon Neuro-Fuzzy approaches gives us a good performance for ozone prediction in high and low ozone concentration with the ability of superior data approximation and self organization.

  • PDF

A Study on the Optimal Design of Polynomial Neural Networks Structure (다항식 뉴럴네트워크 구조의 최적 설계에 관한 연구)

  • O, Seong-Gwon;Kim, Dong-Won;Park, Byeong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.145-156
    • /
    • 2000
  • In this paper, we propose a new methodology which includes the optimal design procedure of Polynomial Neural Networks(PNN) structure for model identification of complex and nonlinear system. The proposed PNN algorithm is based on GMDA(Group Method of Data handling) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and cubic, and is connected as various kinds of multi-variable inputs. In other words, the PNN uses high-order polynomial as extended type besides quadratic polynomial used in GMDH, and the number of input of its node in each layer depends on that of variables used in the polynomial. The design procedure to obtain an optimal model structure utilizing PNN algorithm is shown in each stage. The study is illustrated with the aid of pH neutralization process data besides representative time series data for gas furnace process used widely for performance comparison, and shows that the proposed PNN algorithm can produce the model with higher accuracy than previous other works. And performance index related to approximation and prediction capabilities of model is evaluated and also discussed.

  • PDF

A Fuzzy Model on the PNN Structure and its Applications

  • Sang, R.S.;Oh, Sungkwun;Ahn, T.C.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.259-262
    • /
    • 1997
  • In this paper, a fuzzy model based on the polynomial Neural Network(PNN) structure is proposed to estimate the emission pattern for air pollutant in power plants. The new algorithm uses PNN algorithm based on Group Method of Data Handling (GMDH) algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the least square method in order to identify the optimal consequence parameters. Both time series data for the gas furnace and data for the NOx emission process of gas turbine power plants are used for the purpose of evaluating the performance of the fuzzy model. The simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy anhd feasibility than other works achieved previously.

  • PDF

A Fuzzy Model Based on the PNN Structure

  • Sang, Rok-Soo;Oh, Sung-Kwun;Ahn, Tae-Chon;Hur, Kul
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.83-86
    • /
    • 1998
  • In this paper, a fuzzy model based on the Polynomial Neural Network(PNN) structure is proposed to estimate the emission pattern for air pollutant in power plants. the new algorithm uses PNN algorithm based on Group Mehtod of Data Handling (GMDH) algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the least square method in order to identify the optimal consequence parameters. Both time series data for the gas furnace and data for the NOx emission process of gas turbine power plants are used for the purpose of evaluating the performance of the fuzzy model. The simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

GA-based Feed-forward Self-organizing Neural Network Architecture and Its Applications for Multi-variable Nonlinear Process Systems

  • Oh, Sung-Kwun;Park, Ho-Sung;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.3
    • /
    • pp.309-330
    • /
    • 2009
  • In this paper, we introduce the architecture of Genetic Algorithm(GA) based Feed-forward Polynomial Neural Networks(PNNs) and discuss a comprehensive design methodology. A conventional PNN consists of Polynomial Neurons, or nodes, located in several layers through a network growth process. In order to generate structurally optimized PNNs, a GA-based design procedure for each layer of the PNN leads to the selection of preferred nodes(PNs) with optimal parameters available within the PNN. To evaluate the performance of the GA-based PNN, experiments are done on a model by applying Medical Imaging System(MIS) data to a multi-variable software process. A comparative analysis shows that the proposed GA-based PNN is modeled with higher accuracy and more superb predictive capability than previously presented intelligent models.

Genetically Optimized Fuzzy Polynomial Neural Networks Model and Its Application to Software Process (진화론적 최적 퍼지다항식 신경회로망 모델 및 소프트웨어 공정으로의 응용)

  • Lee, In-Tae;Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.337-339
    • /
    • 2004
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs). Proceeding the layer, this model creates the optimal network architecture through the selection and the elimination of nodes by itself. So, there is characteristic of flexibility. We use a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. GAs is applied to improve the performance with optimal input variables and number of input variables and order. To evaluate the performance of the GAs-based FPNNs, the models are experimented with the use of Medical Imaging System(MIS) data.

  • PDF

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

High-velocity powder compaction: An experimental investigation, modelling, and optimization

  • Mostofi, Tohid Mirzababaie;Sayah-Badkhor, Mostafa;Rezasefat, Mohammad;Babaei, Hashem;Ozbakkaloglu, Togay
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.145-161
    • /
    • 2021
  • Dynamic compaction of Aluminum powder using gas detonation forming technique was investigated. The experiments were carried out on four different conditions of total pre-detonation pressure. The effects of the initial powder mass and grain particle size on the green density and strength of compacted specimens were investigated. The relationships between the mentioned powder design parameters and the final features of specimens were characterized using Response Surface Methodology (RSM). Artificial Neural Network (ANN) models using the Group Method of Data Handling (GMDH) algorithm were also developed to predict the green density and green strength of compacted specimens. Furthermore, the desirability function was employed for multi-objective optimization purposes. The obtained optimal solutions were verified with three new experiments and ANN models. The obtained experimental results corresponding to the best optimal setting with the desirability of 1 are 2714 kg·m-3 and 21.5 MPa for the green density and green strength, respectively, which are very close to the predicted values.

Genetic Algorithms based Optimal Polynomial Neural Network Model (유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 모델)

  • Kim, Wan-Su;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2876-2878
    • /
    • 2005
  • In this paper, we propose Genetic Algorithms(GAs)-based Optimal Polynomial Neural Networks(PNN). The proposed algorithm is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. The study is illustrated with the ACI Distance Relay Data for application to power systems.

  • PDF