• Title/Summary/Keyword: group method of data handling (GMDH)

Search Result 73, Processing Time 0.026 seconds

Forecasting High-Level Ozone Concentration with Fuzzy Clustering (퍼지 클러스터링을 이용한 고농도오존예측)

  • 김재용;김성신;왕보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.191-194
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Also, the results of prediction are not a good performance so far, especially in the high-level ozone concentration. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system.

  • PDF

Neural Network Training Using a GMDH Type Algorithm

  • Pandya, Abhijit S.;Gilbar, Thomas;Kim, Kwang-Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-58
    • /
    • 2005
  • We have developed a Group Method of Data Handling (GMDH) type algorithm for designing multi-layered neural networks. The algorithm is general enough that it will accept any number of inputs and any sized training set. Each neuron of the resulting network is a function of two of the inputs to the layer. The equation for each of the neurons is a quadratic polynomial. Several forms of the equation are tested for each neuron to make sure that only the best equation of two inputs is kept. All possible combinations of two inputs to each layer are also tested. By carefully testing each resulting neuron, we have developed an algorithm to keep only the best neurons at each level. The algorithm's goal is to create as accurate a network as possible while minimizing the size of the network. Software was developed to train and simulate networks using our algorithm. Several applications were modeled using our software, and the result was that our algorithm succeeded in developing small, accurate, multi-layer networks.

Identification of Nonlinear System using Extended GMDH algorithm (확장된 GMDH 알고리즘에 의한 비선형 시스템의 동정)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.827-829
    • /
    • 1999
  • The identification of nonlinear system using Extended GMDH(EGMDH) is studied in this paper. The proposed EGMDH algorithm is based on GMDH(Group Method of Data handling) method and its structure is similar to Neural Networks. The each node of EGMDH structure utilizes several types of high-order polynomial such as linear, quadratic and cubic, and is connected as various kinds of multi-variable inputs. As the operating condition changes, the parameters of EGMDH will also change, so the proposed scheme by means of the EGMDH method is capable of adapting rapidly to the changing environment. The simulation result shows that the simple nonlinear process can be modeled reasonably well by the proposed method which are simple but efficient.

  • PDF

A study on a performance evaluation model of roll manufacturing system using GMDH-type modeling (롤 제조 시스템의 성능 분석에 관한 연구)

  • 황홍석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.09a
    • /
    • pp.387-395
    • /
    • 1995
  • 롤(Roll)의 주물 가공 시스템의 성능(Performance)분석의 문제는 일반적으로 관련된 많은 요인들 때문에 매우 복잡하다. 롤 제조 시스템의 성능과 관련된 주요 요인으로서 주형(Moulding) 제작, 원재료의 용해, 후처리 및 가공 공정 의 요인들을 들 수 있다. 본 연구에서는 이러한 복잡한 롤의 주물 및 가공공 정상의 요인들로부터 롤 제조 시스템의 불량률을 평가하기 위하여 발견적인 방법인 GMDH(Group Method Data Handling)-Type 모델링 방법을 이용하 였다. 롤 주물 가공 시스템의 성능을 불량률로 두고 이에 주요 영향 요인들 의 입력 Data를 위하여 현장 자료로부터 상하한 값을 구하여, Hyper-Cube 프로그램을 이용하여 필요한 수의 Data를 보완하여 사용하였다. 시스템 성능 과 관련된 인자들을 2개식 가능한 조합을 하고 이들 각각의 조합들에 대하 여 6개항으로 된 예측식으로 회귀분석하고 일정 수준 이상의 결과들만을 다 음 단계의 자료로 사용하였다. GMDH 방법은 매 단계마다 영향이 적은 변 수조합을 제외시키므로 최종 해는 그 정확성이 매우 높다. 본 연구를 위하여 GMDH 알고리즘에 따라 계산할수 있는 전산 프로그램을 개발하여 사용하였 으며, 적용예를 롤 주물제조공정에 응용하여 보였다.. 분석된 자료에 의하면 예측 오차가 매우 적음을 보였다.

  • PDF

Forecasting High-Level Ozone Concentration with Fuzzy Clustering (퍼지 클러스터링 이용한 고농도오존예측)

  • 김재용;김성신;왕보현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.336-339
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Especially, the performance of the prediction results in the high-level ozone concentration are not good. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering methods. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, the identification of nonlinear complex systems, and prediction of dynamical systems.

  • PDF

GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups

  • Kaveh, Ali;Bakhshpoori, Taha;Hamze-Ziabari, Seyed Mahmood
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • In the present study, group method of data handling networks (GMDH) are adopted and evaluated for shear strength prediction of both FRP-reinforced concrete members with and without stirrups. Input parameters considered for the GMDH are altogether 12 influential geometrical and mechanical parameters. Two available and very recently collected comprehensive datasets containing 112 and 175 data samples are used to develop new models for two cases with and without shear reinforcement, respectively. The proposed GMDH models are compared with several codes of practice. An artificial neural network (ANN) model and an ANFIS based model are also developed using the same databases to further assessment of GMDH. The accuracy of the developed models is evaluated by statistical error parameters. The results show that the GMDH outperforms other models and successfully can be used as a practical and effective tool for shear strength prediction of members without stirrups ($R^2=0.94$) and with stirrups ($R^2=0.95$). Furthermore, the relative importance and influence of input parameters in the prediction of shear capacity of reinforced concrete members are evaluated through parametric and sensitivity analyses.

A Study on Optimal Polynomial Neural Network for Nonlinear Process (비선형 공정을 위한 최적 다항식 뉴럴네트워크에 관한 연구)

  • Kim, Wan-Su;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.149-151
    • /
    • 2005
  • In this paper, we propose the Optimal Polynomial Neural Networks(PNN) for nonlinear process. The PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. Medical Imaging System(MIS) data is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

A study on the novel Neuro-fuzzy network for nonlinear modeling (비선형 모델링에 대한 새로운 뉴로-퍼지 네트워크 연구)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.791-793
    • /
    • 2000
  • The fuzzy inference system is a popular computing framework based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantage of fuzzy approach over traditional ones lies on the fact that fuzzy system does not require a detail mathematical description of the system while modeling. As modeling method. the Group Method of Data Handling(GMDH) is introduced by A.G. Ivakhnenko GMDH is an analysis technique for identifying nonlinear relationships between system's inputs and output. We study a Novel Neuro-Fuzzy Network (NNFN) in this paper. NNFN is a network resulting from the combination of a fuzzy inference system and polynomial neural network(PNN) (7) which is advanced structure of GMDH. Simulation involve a series of synthetic as well as experimental data used across various neurofuzzy systems.

  • PDF

A Design on Model Following Nonlinear Control System Using GMDH (GMDH 기법에 의한 모델추종형 비선형 제어시스템 구성에 관한 연구)

  • Hwang, C.S.;Kim, M.S.;Kim, D.W.;Lee, K.H.;Shim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.326-328
    • /
    • 1993
  • Modelling theory, based on differential equations, is not an adequate tool for solving the problems of complex system. Identification of complex system using GMDH(group method of data handling) is more appropriate for this problems. In this paper, GMDH algorithm is used to identify the nonlinear plant and to design model following nonlinear control system. Simulation for the DC motor show the good performance of model following nonlinear control system.

  • PDF

Optimal design of Self-Organizing Fuzzy Polynomial Neural Networks with evolutionarily optimized FPN (진화론적으로 최적화된 FPN에 의한 자기구성 퍼지 다항식 뉴럴 네트워크의 최적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) by means of genetically optimized fuzzy polynomial neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms(GAs). The conventional SOFPNNs hinges on an extended Group Method of Data Handling(GMDH) and exploits a fixed fuzzy inference type in each FPN of the SOFPNN as well as considers a fixed number of input nodes located in each layer. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, a collection of the specific subset of input variables, and the number of membership function) and addresses specific aspects of parametric optimization. Therefore, the proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series).

  • PDF