• Title/Summary/Keyword: group method of data handling (GMDH)

Search Result 73, Processing Time 0.028 seconds

Short-term Electric Load Forecasting Based on Wavelet Transform and GMDH

  • Koo, Bon-Gil;Lee, Heung-Seok;Park, Juneho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.832-837
    • /
    • 2015
  • The group method of data handling (GMDH) algorithm has proven to be a powerful and effective way to extract rules or polynomials from an electric load pattern. However, because it is nonstationary, the load pattern needs to be decomposed using a discrete wavelet transform. In addition, if a load pattern has a complicated curve pattern, GMDH should use a higher polynomial, which requires complex computing and consumes a lot of time. This paper suggests a method for short-term electric load forecasting that uses a wavelet transform and a GMDH algorithm. Case studies with the proposed algorithm were carried out for one-day-ahead forecasting of hourly electric loads using data during the years 2008-2011. To prove the effectiveness of our proposed approach, the results were evaluated and compared with those obtained by Holt-Winters method and artificial neural network. Our suggested method resulted in better performance than either comparison group.

Nonlinear Identification of Electronic Brake Pedal Behavior Using Hybrid GMDH and Genetic Algorithm in Brake-By-Wire System

  • Bae, Junhyung;Lee, Seonghun;Shin, Dong-Hwan;Hong, Jaeseung;Lee, Jaeseong;Kim, Jong-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1292-1298
    • /
    • 2017
  • In this paper, we represent a nonlinear identification of electronic brake pedal behavior in the brake-by-wire (BBW) system based on hybrid group method of data handling (GMDH) and genetic algorithm (GA). A GMDH is a kind of multi-layer network with a structure that is determined through training and which can express nonlinear dynamics as a mathematical model. The GA is used in the GMDH, enabling each neuron to search for its optimal set of connections with the preceding layer. The results obtained with this hybrid approach were compared with different nonlinear system identification methods. The experimental results showed that the hybrid approach performs better than the other methods in terms of root mean square error (RMSE) and correlation coefficients. The hybrid GMDH/GA approach was effective for modeling and predicting the brake pedal system under random braking conditions.

GMDH Algorithm with Data Weighting Performance and Its Application to Power Demand Forecasting (데이터 가중 성능을 갖는 GMDH 알고리즘 및 전력 수요 예측에의 응용)

  • Shin Jae-Ho;Hong Yeon-Chan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.631-636
    • /
    • 2006
  • In this paper, an algorithm of time series function forecasting using GMDH(group method of data handling) algorithm that gives more weight to the recent data is proposed. Traditional methods of GMDH forecasting gives same weights to the old and recent data, but by the point of view that the recent data is more important than the old data to forecast the future, an algorithm that makes the recent data contribute more to training is proposed for more accurate forecasting. The average error rate of electric power demand forecasting by the traditional GMDH algorithm which does not use data weighting algorithm is 0.9862 %, but as the result of applying the data weighting GMDH algorithm proposed in this paper to electric power forecasting demand the average error rate by the algorithm which uses data weighting algorithm and chooses the best data weighting rate is 0.688 %. Accordingly in forecasting the electric power demand by GMDH the proposed method can acquire the reduced error rate of 30.2 % compared to the traditional method.

Neuro-Fuzzy GMDH Model and Its Application to Forecasting of Mobile Communication (뉴로 - 퍼지 GMDH 모델 및 이의 이동통신 예측문제에의 응용)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.28-32
    • /
    • 2003
  • In this paper, the fuzzy group method data handling-type(GMDH) neural networks and their application to the forecasting of mobile communication system are described. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to neural networks, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of neuro-fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the neuro-fuzzy GMDH. The GMDH-type neural networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the neuro-fuzzy GMDH. The computer program is developed and successful applications are shown in the field of estimating problem of mobile communication with the number of factors considered.

Fuzzy GMDH-type Model and Its Application to Financial Demand Forecasting for the Educational Expenses

  • Hwang, Heung-Suk;Seo, Mi-Young
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.183-189
    • /
    • 2007
  • In this paper, we developed the fuzzy group method data handling-type (GMDH) Model and applied it to demand forecasting of educational expenses. At present, GMDH family of modeling algorithms discovers the structure of empirical models and it gives only the way to get the most accurate identification and demand forecasts in case of noised and short input sampling. In distinction to fuzzy system, the results are explicit mathematical models, obtained in a relative short time. In this paper, an adaptive learning network is proposed as a kind of fuzzy GMDH. The proposed method can be reinterpreted as a multi-stage fuzzy decision rule which is called as the fuzzy GMDH. The fuzzy GMDH-type networks have several advantages compared with conventional multi-layered GMDH models. Therefore, many types of nonlinear systems can be automatically modeled by using the fuzzy GMDH. A computer program is developed and successful applications are shown in the field of demand forecasting problem of educational expenses with the number of factors considered.

  • PDF

Modeling of Daily Reference Evapotranspiration using Polynomial Networks Approach (PNA) (PNA를 이용한 일 기준증발산량의 모형화)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.473-473
    • /
    • 2011
  • Group method of data handling neural networks model (GMDH-NNM) is used to estimate daily reference evapotranspiration (ETo) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$), mean relative humidity ($RH_{mean}$) and sunshine duration (SD). And, for the performances of GMDH-NNM, it consists of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of GMDH-NNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily ETo data using GMDH-NNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as ETo modeling can be generalized using GMDH-NNM.

  • PDF

Modeling of Daily Pan Evaporation using the Limited Climatic Variables and Polynomial Networks Approach (제한된 기상변수와 Polynomial Networks Approach를 이용한 일 증발접시 증발량의 모형화)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1596-1599
    • /
    • 2010
  • Group method of data handling neural networks model (GMDH-NNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$), mean relative humidity ($RH_{mean}$) and sunshine duration (SD). And, for the performances of GMDH-NNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of GMDH-NNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE data using GMDH-NNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using GMDH-NNM.

  • PDF

A design on model following control system of DC servo motor using GMDH algorithm (GMDH 알고리즘에 의한 직류 서보 전동기의 모델추종형 제어계 구성에 관한 연구)

  • 황창선;김문수;이양우;김동완
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1044-1047
    • /
    • 1996
  • In this paper, GMDH(Group Method of Data Handling) algorithm, which is based on heuristic self organization to predict and identify the complex system, is applied to the control system of DC servo motor. The mathematical relation between input voltage and motor speed is obtained by GMDH algorithm. A design method of model following control system based on GMDH algorithm is developed. As a result of applying this method to DC servo motor, the simulation and experiment have shown that the developed method gives a good performance in tracking the reference model and in rejection of disturbance, in spite of constant load and changing load.

  • PDF

Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference (GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크)

  • 박호성;윤기찬;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

Fuzzy Polynomial Neural Network Algorithm using GMDH Mehtod and its Application to the Wastewater Treatment Process (GMDH 방법에 의한 FPNN 일고리즘과 폐스처리공정에의 응용)

  • Oh, Sung-Kwon;Hwang, Hyung-Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.96-105
    • /
    • 1997
  • In this paper, A new design method of fuzzy modeling is presented for the model identification of nonlinear complex systems. The proposed FPNN(Fuzzy Polynomial Neural Network) modeling implements system structure and parameter identification using GMDH(Group Method of Data Handling) method and linguistic fuzzy implication rules from input and output data of processes. In order to identify premise structure and parameter of fuzzy implication rules, GMDH method and regression polynomial fuzzy reasoning method are used and the least square method is utilized for the identification of optimum consequence parameters. Time series data for gas furnace and those for wastewater treatment process are used for the purpose of evaluating the performance of the proposed FPNN modeling. The results show that the proposed method can produce the fuzzy model with higher accuracy than other works achieved previously.

  • PDF