• Title/Summary/Keyword: group algebra

Search Result 185, Processing Time 0.023 seconds

A NOTE ON g-SEMISIMPLICITY OF A FINITE-DIMENSIONAL MODULE OVER THE RATIONAL CHEREDNIK ALGEBRA OF TYPE A

  • Gicheol Shin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.77-86
    • /
    • 2023
  • The purpose of this paper is to show that a certain finite dimensional representation of the rational Cherednik algebra of type A has a basis consisting of simultaneous eigenvectors for the actions of a certain family of commuting elements, which are introduced in the author's previous paper. To this end, we introduce a combinatorial object, which is called a restricted arrangement of colored beads, and consider an action of the affine symmetric group on the set of the arrangements.

On the Applications of the Genetic Decomposition of Mathematical Concepts -In the Case of $Z_n$ in Abstract Algebra- (수학적 개념의 발생적 분해의 적용에 대하여 -추상대수학에서의 $Z_n$의 경우-)

  • Park Hye Sook;Kim Suh-Ryung;Kim Wan Soon
    • The Mathematical Education
    • /
    • v.44 no.4 s.111
    • /
    • pp.547-563
    • /
    • 2005
  • There have been many papers reporting that the axiomatic approach in Abstract Algebra is a big obstacle to overcome for the students who are not trained to think in an abstract way. Therefore an instructor must seek for ways to help students grasp mathematical concepts in Abstract Algebra and select the ones suitable for students. Mathematics faculty and students generally consider Abstract Algebra in general and quotient groups in particular to be one of the most troublesome undergraduate subjects. For, an individual's knowledge of the concept of group should include an understanding of various mathematical properties and constructions including groups consisting of undefined elements and a binary operation satisfying the axioms. Even if one begins with a very concrete group, the transition from the group to one of its quotient changes the nature of the elements and forces a student to deal with elements that are undefined. In fact, we also have found through running abstract algebra courses for several years that students have considerable difficulty in understanding the concept of quotient groups. Based on the above observation, we explore and analyze the nature of students' knowledge about $Z_n$ that is the set of congruence classes modulo n. Applying the genetic decomposition method, we propose a model to lead students to achieve the correct concept of $Z_n$.

  • PDF

ON THE SEPARATING IDEALS OF SOME VECTOR-VALUED GROUP ALGEBRAS

  • Garimella, Ramesh V.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.737-746
    • /
    • 1999
  • For a locally compact Abelian group G, and a commutative Banach algebra B, let $L^1$(G, B) be the Banach algebra of all Bochner integrable functions. We show that if G is noncompact and B is a semiprime Banach algebras in which every minimal prime ideal is cnotained in a regular maximal ideal, then $L^1$(G, B) contains no nontrivial separating idal. As a consequence we deduce some automatic continuity results for $L^1$(G, B).

  • PDF

WEAK HOPF ALGEBRAS CORRESPONDING TO NON-STANDARD QUANTUM GROUPS

  • Cheng, Cheng;Yang, Shilin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.463-484
    • /
    • 2017
  • We construct a weak Hopf algebra $wX_q(A_1)$ corresponding to non-standard quantum group $X_q(A_1)$. The PBW basis of $wX_q(A_1)$ is described and all the highest weight modules of $wX_q(A_1)$ are classified. Finally we give the Clebsch-Gordan decomposition of the tensor product of two highest weight modules of $wX_q(A_1)$.

ON UDL DECOMPOSITIONS IN SEMIGROUPS

  • Lim, Yong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.633-651
    • /
    • 1997
  • For a non-degenerate symmetric bilinear form $\sigma$ on a finite dimensional vector space E, the Jordan algebra of $\sigma$-symmetric operators has a symmetric cone $\Omega_\sigma$ of positive definite operators with respect to $\sigma$. The cone $C_\sigma$ of elements (x,y) \in E \times E with \sigma(x,y) \geq 0$ gives the compression semigroup. In this work, we show that in the sutomorphism group of the tube domain over $\Omega_\sigma$, this semigroup has a UDL and Ol'shanskii decompositions and is exactly the compression semigroup of $\Omega_sigma$.

  • PDF

A NOTE ON THE ROOT SPACES OF AFFINE LIE ALGEBRAS OF TYPE $D_{\iota}^{(1)}$

  • KIM YEONOK
    • The Pure and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.65-73
    • /
    • 2005
  • Let g = g(A) = (equation omitted) + be a symmetrizable Kac-Moody Lie algebra of type D/sub l//sup (1) with W as its Weyl group. We construct a sequence of root spaces with certain conditions. We also find the number of terms of this sequence is less then or equal to the hight of θ, the highest root.

  • PDF

ANOTHER PROOF THAT Aγ(G) AND A(G) ARE BANACH ALGEBRAS

  • Lee, Hun Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.337-344
    • /
    • 2011
  • We provide another unified proof that $A_{\gamma}(G)$ and $A_{\Delta}(G)$ are Banach algebras for a compact group G, where $A_{\gamma}(G)$ and $A_{\Delta}(G)$ are images of the convolution and the twisted convolution, respectively, on $A(G{\times}G)$. Our new approach heavily depends on analysis of co-multiplication on VN(G), the group von-Neumann algebra of G.

ON COMMUTING ORDINARY DIFFERENTIAL OPERATORS WITH POLYNOMIAL COEFFICIENTS CORRESPONDING TO SPECTRAL CURVES OF GENUS TWO

  • Davletshina, Valentina N.;Mironov, Andrey E.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1669-1675
    • /
    • 2017
  • The group of automorphisms of the first Weyl algebra acts on commuting ordinary differential operators with polynomial coefficient. In this paper we prove that for fixed generic spectral curve of genus two the set of orbits is infinite.

UNIT KILLING VECTORS AND HOMOGENEOUS GEODESICS ON SOME LIE GROUPS

  • Yi, Seunghun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.291-297
    • /
    • 2006
  • We find unit Killing vectors and homogeneous geodesics on the Lie group with Lie algebra $\mathbf{a}{\oplus}_p\mathbf{r}$, where $\mathbf{a}$ and $\mathbf{r}$ are abelian Lie algebra of dimension n and 1, respectively.

  • PDF

A study on the teaching of algebraic structures in school algebra (학교수학에서의 대수적 구조 지도에 대한 소고)

  • Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.3
    • /
    • pp.367-382
    • /
    • 2005
  • In this paper, we deal with various contents relating to the group concept in school mathematics and teaching of algebraic structures indirectly by combining these contents. First, we consider structure of knowledge based on Bruner, and apply these discussions to the teaching of algebraic structure in school algebra. As a result of these analysis, we can verify that the essence of algebraic structure is group concept. So we investigate the previous researches about group concept: Piaget, Freudenthal, Dubinsky. In our school, the contents relating to the group concept have been taught from elementary level indirectly. Tn elementary school, the commutative law and associative law is implicitly taught in the number contexts. And in middle school, various linear equations are taught by the properties of equality which include group concept. But these algebraic contents is not related to the high school. Though we deal with identity and inverse in the binary operations in high school mathematics, we don't relate this algebraic topics with the previous learned contents. In this paper, we discussed algebraic structure focusing to the group concept to obtain a connectivity among school algebra. In conclusion, the group concept can take role in relating these algebraic contents and teaching the algebraic structures in school algebra.

  • PDF