• Title/Summary/Keyword: group algebra

Search Result 185, Processing Time 0.019 seconds

ON PETERSON'S OPEN PROBLEM AND REPRESENTATIONS OF THE GENERAL LINEAR GROUPS

  • Phuc, Dang Vo
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.643-702
    • /
    • 2021
  • Fix ℤ/2 is the prime field of two elements and write 𝒜2 for the mod 2 Steenrod algebra. Denote by GLd := GL(d, ℤ/2) the general linear group of rank d over ℤ/2 and by ${\mathfrak{P}}_d$ the polynomial algebra ℤ/2[x1, x2, …, xd] as a connected unstable 𝒜2-module on d generators of degree one. We study the Peterson "hit problem" of finding the minimal set of 𝒜2-generators for ${\mathfrak{P}}_d$. Equivalently, we need to determine a basis for the ℤ/2-vector space $$Q{\mathfrak{P}}_d:={\mathbb{Z}}/2{\otimes}_{\mathcal{A}_2}\;{\mathfrak{P}}_d{\sim_=}{\mathfrak{P}}_d/{\mathcal{A}}^+_2{\mathfrak{P}}_d$$ in each degree n ≥ 1. Note that this space is a representation of GLd over ℤ/2. The problem for d = 5 is not yet completely solved, and unknown in general. In this work, we give an explicit solution to the hit problem of five variables in the generic degree n = r(2t - 1) + 2ts with r = d = 5, s = 8 and t an arbitrary non-negative integer. An application of this study to the cases t = 0 and t = 1 shows that the Singer algebraic transfer of rank 5 is an isomorphism in the bidegrees (5, 5 + (13.20 - 5)) and (5, 5 + (13.21 - 5)). Moreover, the result when t ≥ 2 was also discussed. Here, the Singer transfer of rank d is a ℤ/2-algebra homomorphism from GLd-coinvariants of certain subspaces of $Q{\mathfrak{P}}_d$ to the cohomology groups of the Steenrod algebra, $Ext^{d,d+*}_{\mathcal{A}_2}$ (ℤ/2, ℤ/2). It is one of the useful tools for studying these mysterious Ext groups.

STRUCTURE OF SOME CLASSES OF SEMISIMPLE GROUP ALGEBRAS OVER FINITE FIELDS

  • Makhijani, Neha;Sharma, Rajendra Kumar;Srivastava, J.B.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1605-1614
    • /
    • 2014
  • In continuation to the investigation initiated by Ferraz, Goodaire and Milies in [4], we provide an explicit description for the Wedderburn decomposition of finite semisimple group algebras of the class of finite groups G, such that $$G/Z(G){\simeq_-}C_2{\times}C_2$$, where Z(G) denotes the center of G.

CORESTRICTION MAP ON BRAUER SUBGROUPS

  • CHOI, EUN-MI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.35-49
    • /
    • 2005
  • For an extension field K of k, a restriction homomorphism on Brauer k-group B(k) maps Brauer k-algebras to Brauer K- algebras by tensor product. A purpose of this work is to study the restriction map that sends radical (Schur) k-algebras to radical (Schur) K-algebras. And we ask an analogous question with respect to corestriction map on Brauer group B(K) that whether the corestriction map sends radical K-algebras to radical k-algebras.

YANG-MILLS CONNECTIONS ON A COMPACT CONNECTED SEMISIMPLE LIE GROUP

  • Park, Joon-Sik
    • East Asian mathematical journal
    • /
    • v.26 no.1
    • /
    • pp.75-79
    • /
    • 2010
  • Let G be a compact connected semisimple Lie group, g the Lie algebra of G, g the canonical metric (the biinvariant Riemannian metric which is induced from the Killing form of g), and $\nabla$ be the Levi-Civita connection for the metric g. Then, we get the fact that the Levi-Civita connection $\nabla$ in the tangent bundle TG over (G, g) is a Yang-Mills connection.

COMPUTATION OF WEDDERBURN DECOMPOSITION OF GROUPS ALGEBRAS FROM THEIR SUBALGEBRA

  • Mittal, Gaurav;Sharma, Rajendra Kumar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.781-787
    • /
    • 2022
  • In this paper, we show that under certain conditions the Wedderburn decomposition of a finite semisimple group algebra 𝔽qG can be deduced from a subalgebra 𝔽q(G/H) of factor group G/H of G, where H is a normal subgroup of G of prime order P. Here, we assume that q = pr for some prime p and the center of each Wedderburn component of 𝔽qG is the coefficient field 𝔽q.

Exponential rank of extensions of $C^*$-algebras

  • Jeong, Ja-A;Park, Gie-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.395-401
    • /
    • 1997
  • We show that if I is an ideal of a $C^*$-algebra A such that the unitary group of I is connected then cer(A) $\leq$ cer(I) + cer(A/I), where cer(A) denotes the $C^*$-exponential rank of A.

  • PDF

A STUDY ON NILPOTENT LIE GROUPS

  • Nam, Jeong-Koo
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.137-148
    • /
    • 1998
  • We briefly discuss the Lie groups, it's nilpotency and representations of a nilpotent Lie groups. Dixmier and Kirillov proved that simply connected nilpotent Lie groups over $\mathbb{R}$ are monomial. We reformulate the above result at the Lie algebra level.

  • PDF

QUANTUM DYNAMICAL SEMIGROUP AND ITS ASYMPTOTIC BEHAVIORS

  • Choi, Veni
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.189-198
    • /
    • 2004
  • In this study we consider quantum dynamical semi-group with a normal faithful invariant state. A quantum dynamical semigroup $\alpha\;=\;\{{\alpha}_t\}_{t{\geq}0}$ is a class of linear normal identity-preserving mappings on a von Neumann algebra M with semigroup property and some positivity condition. We investigate the asymptotic behaviors of the semigroup such as ergodicity or mixing properties in terms of their eigenvalues under the assumption that the semigroup satisfies positivity. This extends the result of [13] which is obtained under the assumption that the semi group satisfy 2-positivity.

BRAUER GROUP OVER A KRULL DOMAIN

  • Lee, Heisook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.135-137
    • /
    • 1989
  • Let R be a Krull domain with field of fractions K. By Br(R) we denote the Brauer group of R. Studying the Kernel of the homomorphism Br(R).rarw.Br(K), Orzech defined Brauer groups Br(M) for different categories M of R-modules [4]. In this paper we show that an algebra A in Br(D) is a maximal order in A K and that the map Br(D).rarw. Br(K) is one to one. We note here few conventions. All rings are Krull domains and all modules will be unitary. By Z we donote the set of height one prime ideals of a Krull domain.

  • PDF