• Title/Summary/Keyword: groundwater exploration

Search Result 168, Processing Time 0.031 seconds

Rapid estimation of salinity in seawater intrusion zones and correlation analysis between resistivity and salinity (해수침투 지역의 염분농도 분포 파악 및 전기비저항의 상관성분석 사례)

  • Jung, Lae-Chul;Kim, Jung-Ho;Kim, Ki-Seog;Kim, Jong-Hoon;Ahn, Hee-Yoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.307-312
    • /
    • 2007
  • Seawater intrusion in estuarine regions is an important issue in protecting groundwater against salinity increase as well as in protecting construction materials against corrosion. For example, drain water ejected during accelerated consolidation for the improvement of soft ground can cause damages to farm land because the drain water from seawater intrusion zones contains salinity. In this study, we have employed correlation analysis between resistivity value and salinity of in situ pore water. The correlation analysis indicates that resistivity and salinity are in exponential relationship with good correlation. Therefore we suggest that rapid estimation of spatial distribution of NaCl is possible using resistivity data.

  • PDF

Protection for sea-water intrusion by geophysical prospecting & GIS (해수침투 방지를 위한 물리검층과 GIS 활용방안)

  • Han Kyu-Eon;Yi Sang-Sun;Jeong Cha-Youn
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.54-69
    • /
    • 2000
  • There are groundwater trouble by high-salinity yield inducing sea-water intrusion in Cheju Island. It is used groundwater-GIS(Well-lnfo) in the maintenance and management of groundwater in Cheju Island to grasp groundwater trouble area and cause of high-salinity yield. For 16 wells certain to yield high-salinity, we logged specific electrical conductivity(EC) and tried to get hold of freshwater and saltwater relationship. As result of distribution of $Cl^-$ by depth, it is showed up groundwater trouble by high-salinity yield in the east coastal area and the partly north coastal area. The reason of high-salinity groundwater yield are low-groundwater level by the structure of geology and low-hydraulic gradient etc. There is necessity for management to development and use of groundwater in the high-salinity area, special management area.

  • PDF

Investigation of fault in the Kyungju Kaekok-ri area by 2-D Electrical Resistivity Survey (2차원 전기비저항 탐사를 이용한 경주 개곡리 지역의 단층조사)

  • Lee, Chi-Seop;Kim, Hee-Joon;Kong, Young-Sae;Lee, Jung-Mo;Chang, Tae-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.124-132
    • /
    • 2001
  • Electrical resistivity survey has been conducted for delineating geological fault structure in Kaekok-ri near Kyungju. In general, electrical resistivity survey has an advantage of searching buried faults and its traces compared with other geophysical survey methods. Distribution of electrical conductivity in the ground is influenced by the ratio of pores, groundwater and clay minerals. These properties are evidenced indirectly to explain for weathering condition, faults and fracture Bones. Thus the electrical resistivity survey can be an effective method to find buried faults. We have carried out two dimensional (2-D) interpretation by means of smoothness-constrained least-squares and finite element method. Field data used in this paper was acquired at Kaekok-ri, Wuedong-eup, Kyungju-si, where is Ulsan Fault and is close to the region in which debatable quaternary fault traces were found recently. The dipole-dipole array resistivity survey which could show the 2-D subsurface electrical resistivity structure, was carried out in the area with three lines. The results showed good property of fault, fracture zone and fault traces which we estimated were congruous with the results. Through this study, 2-D electrical resistivity survey interpretation for fault is useful to apply.

  • PDF

Partitioning Interwell Tracer Test and Analysis Method for Estimating Oil Pollutants in the Underground (지중 유류오염량 추정을 위한 분배추적자 시험 및 해석방법)

  • Jeong, Chan-Duck;Kim, Yong-Cheol;Myeong, Woo-Ho;Bang, Sung-Su;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.99-112
    • /
    • 2022
  • From early 2000, many researchers in the groundwater and soil environment remediation project tried to calculate the pollution level and pollution remediation cost and reflect it in the design. In addition, by identifying the movement characteristics of oil pollutants in the underground environment, many researchers tried to derive design factors necessary for pollution purification. However, although the test should be conducted in an area contaminated with oil, the toxicity and risk are too great for testing by deliberately leaking pollutants that are harmful to the human body. And as oil-contaminated areas are promoted by military units such as returned US military bases, there is a limit to access by the general public. In addition, since the indoor simulation test and the field application test have been carried out separately from each other, it was difficult to compare and review various simulation tests Therefore, in this study, PITT (Partitioning Interwell Tracer Test) and analysis methods were specifically presented through actual tests so that field workers could easily use them with the help of the military base and the Korea Rural Community Corporation Soil Environment Restoration Team. However, in order to directly reflect the distribution tracer test results in the pollution remediation design, it is necessary to reduce the analysis errors by comparing the analysis results of the existing soil pollution survey, physical exploration, and numerical modeling. In addition, it is judged to be cautious in the analysis because errors can easily occur due to various factors such as the type of oil at the polluted site, the hydraulic conductivity of the aquifer, and the skill of the researcher.

Case study on application of discontinuity density as a characteristics factor of rock mass groundwater (암반지하수 특성 인자로서 불연속면 밀도 적용 사례 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.693-698
    • /
    • 2024
  • As there are various types of discontinuities developing along with various rock types, the orientation and density of each type of discontinuities were measured to analyze the behavior of groundwater within the rock mass. Among the orientations of discontinuities, the strike was measured in azimuth and expressed as a discontinuity trajectory, and the density of discontinuities was quantified as the sum of the lengths of discontinuities developed per unit area. The overall discontinuity trajectory in the study area is predominantly in the northeast direction, the north-south and east-west directions are dominant in the igneous rock distribution area, and the east-west and northeast directions are dominant in the sedimentary rock distribution area. Among the types of discontinuities, they show discontinuity trajectories similar to the northeast direction, which is the dominant orientation of stratum boundaries, stratification, and foliation. The discontinuity density ranges from 0.1 m-1 to 1,000 m-1. The density distribution of discontinuities was expressed in the form of discontinuity contour diagrams. As a result, the crushed rock near Demiseam in the southern and southwestern part of the study area, the igneous rock area around Maryeong-myeon, the igneous rock area near Yongdam Dam in the northeast, and the igneous rock area near Unilam and Banilam in the northwest showed the highest density of discontinuities at over 100m-1., the sedimentary rock area near Maisan Mountain showed relatively low values. It suggests that the results of geophysical exploration and drilling survey data in the existing study area, as well as the geological structure and density and trajectory of discontinuities, may be important factors in the behavior of groundwater in rock mass in the future.

Stability Analysis for the Pohang Deep Geothermal Borehole (포항 심부 지열 시추공의 안정성 분석 연구)

  • Lee, Min-Jung;Chang, Chan-Dong;Lee, Jun-Bok;Lee, Tae-Jong;Hwang, Se-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.204-213
    • /
    • 2008
  • This paper presents the analysis about the stability of the Pohang deep geothermal borehole drilled in 2006. Severe wellhole instability problems such as collapse and tight hole occurred in weak rocks while drilling. Optimal mud pressure (mud window) required to prevent instability problems during drilling is obtained from analysis on in-situ stress and rock strength. The window is bounded by vertical stress in its upper limit and by either collapse pressure or pore pressure in its lower limit. Mud window varies with different types of rocks. In the top-most semi-consolidated mudstone formation, no mud window can secure borehole stability. In some weak rock types (basic dyke and crystal tuff), the borehole pressure needs to be higher by $50{\sim}60%$ than hydrostatic pressure. That means a mud density of 1.5 g/$cm^3$ or higher should be applied during drilling in order to prevent excessive collapse around the borehole.

Robust 1D inversion of large towed geo-electric array datasets used for hydrogeological studies (수리지질학 연구에 이용되는 대규모 끄는 방식 전기비저항 배열 자료의 1 차원 강력한 역산)

  • Allen, David;Merrick, Noel
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 2007
  • The advent of towed geo-electrical array surveying on water and land has resulted in datasets of magnitude approaching that of airborne electromagnetic surveying and most suited to 1D inversion. Robustness and complete automation is essential if processing and reliable interpretation of such data is to be viable. Sharp boundaries such as river beds and the top of saline aquifers must be resolved so use of smoothness constraints must be minimised. Suitable inversion algorithms must intelligently handle low signal-to-noise ratio data if conductive basement, that attenuates signal, is not to be misrepresented. A noise-level aware inversion algorithm that operates with one elastic thickness layer per electrode configuration has been coded. The noise-level aware inversion identifies if conductive basement has attenuated signal levels so that they are below noise level, and models conductive basement where appropriate. Layers in the initial models are distributed to span the effective depths of each of the geo-electric array quadrupoles. The algorithm works optimally on data collected using geo-electric arrays with an approximately exponential distribution of quadrupole effective depths. Inversion of data from arrays with linear electrodes, used to reduce contact resistance, and capacitive-line antennae is plausible. This paper demonstrates the effectiveness of the algorithm using theoretical examples and an example from a salt interception scheme on the Murray River, Australia.

Analysis of the under Pavement Cavity Growth Rate using Multi-Channel GPR Equipment (멀티채널 GPR 장비를 이용한 도로하부 공동의 크기 변화 분석)

  • Park, Jeong Jun;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.60-69
    • /
    • 2020
  • Purpose: Cavity growth process monitoring is to periodically monitor changes in common size and topography for general and observational grades to predict the rate of common growth. The purpose of this study is to establish a systematic cavity management plan by evaluating the general and observational class community in a non-destructive method. Method: Using GPR exploration equipment, the acquired surface image and the surrounding status image are analyzed in the GPR probe radargram in depth, profile, and cross section of the location. The exact location is selected using the distance and surrounding markings shown on the road surface of the initial detection cavity, and the test cavity is analyzed by calling the radar at the corresponding location. Result: As a result of monitoring tests conducted at a cavity 30 sites of general and observation grade, nine sites have been recovered. Changes in scale were seen in 21 cavity locations, and changes in size and grade occurred in 13 locations. Conclusion: The under road cavity is caused by various causes such as damage to the burial site, poor construction, soil leakage caused by groundwater leakage, waste and ground vibration. Among them, indirect factors could infer the effects of groundwater and localized rainfall.

Detection of Inflow Permeable Zones Using Fluid Replacement Conductivity Logging in Coastal Aquifer (공내수 치환 전기전도도검층을 이용한 연안지역 대수층의 탐지)

  • Hwang, Se-Ho;Park, Yun-Seong;Shin, Je-Hyun;Park, Kwon-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • Fluid replacement and conductivity logging have been applied to three boreholes in coastal aquifer in order to identify permeable fractures and to estimate the origin of saline groundwater. Fluid replacement technique measures and monitors the change of borehole fluid conductivity with depth under ambient or pumping condition after replacing the original borehole fluid with different one (by pumping out original one and injecting simultaneously new one at the hole bottom). After the replacement of borehole fluid, the change of fluid conductivity can be the direct indicator of the intake flow of formation water through aquifer such as permeable fractures or porous formations. The conductivity profiles measured with times therefore indicate the locations of permeable zone or fractures within the open hole or the fully slotted casing hole. As a result of fluid conductivity logging for three boreholes at coastal area in Yeonggwang, Jeonam Province, it is interpreted that the seawater intrusion in this area is not by remnant saline groundwater after land reclamation but mainly by intrusion of saline water through fractured rock. This approach might be useful for assessing the characteristics of seawater intrusion, the design of optimal pumping, the mitigation of seawater intrusion using freshwater injection, and estimating the hydraulic characteristics in coastal aquifer.

Exploration of Submarine Spring Along the Coastal Areas of Busan Metropolitan City (부산 인근 연안해역에서 해저 용천수 유출 탐사)

  • Lee, Yong-Woo;Khim, Boo-Keun;Kim, Sunghan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.178-185
    • /
    • 2013
  • We measured salinity and $^{222}Rn$ concentration to explore submarine spring along the coastal areas (Mundongri, Icheon-ri, Jukseong-ri, Daebyeon-ri, Yeonhwa-ri, and Dadae-po) including Ilkwang Bay of Busan Metropolitan City in 2009 and 2010. Before field observation, we selected the potential and possible locations of submarine spring based on the lineament distribution and rose diagram analysis. Salinity and radon concentration were measured within the 1~2 km from the coastal lines. Radon activity decreased gradually from onshore to offshore. Vertical profiles of salinity at some stations showed lateral transport of water mass characterized by low salinity. Vertical profiles of salinity in the Ilkwang Bay, which is a unique bay in the south-eastern coastal area of Busan Metropolitan City, also showed the occurrence of low salinity in the bottom seawater. Our results suggest the possible occurrence of submarine discharge of fresh groundwater in the coastal areas around Busan Metropolitan City. In the future, intensive research should be conducted for the exploration methods of submarine spring as well for the possible utility of submarine groundwater as alternative water resources.