• Title/Summary/Keyword: groundwater discharge

Search Result 240, Processing Time 0.018 seconds

Classification of Groundwater Level Variation Types Near the Excavated Area of the Temporary Gulpocheon Discharge Channel (굴포천 임시방수로 굴착구간 주변의 지하수 수위 변동 유형 분류)

  • Kim, Chang-Hoon;Lee, Su-Gon;Hahn, Jeong-Sang;Kim, Nam-Ju;Jeon, Byeong-Chu
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.631-641
    • /
    • 2014
  • Characteristics of water-level changes in the Temporary Gulpocheon Discharge Channel were identified by observing and analyzing changes in the subterranean water level induced by hydrological stresses the underground aquifer. The subterranean water level refers to the level at which the pressure of subterranean water passing through the corresponding position has an equipotential value that is in equilibrium with the atmospheric pressure at that location. This water level is not fixed but changes in response to hydrological stress. It can be identified by repeatedly measuring the distance from the observation point to the surface of the subterranean water. The subterranean water-level change equation and the variance range of the hydrological curve of subterranean water over 24 hours at the Gimpo-Gimpo National Groundwater Monitoring Network (NGMN) were used as assessment factors. The variance characteristics of the subterranean water at the 18 monitoring system locations were classified into three impact, observational wish, and non-impact. The impact type accounted for 50% of the subterranean water of and accurately reflected the water-level changes due to hydrological stress, showing that distance is the major controlling factor. The observational wish type accounted for 27.8% of the subterranean water, and one of the two assessment factors did not meet the assessment factors. The nonimpact type accounted for 22.2% of the subterranean water. This type satisfied the two assessment factors and represents subterranean water-level changes response to precipitation.

Effects of Selected Time on Analysis Results in Step-Drawdown Tests (단계양수시험 해석시 시간선택이 해석결과에 미치는 영향)

  • Lee Jin-Yong;Song Sung-Ho;Lee Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.59-65
    • /
    • 2005
  • Step-drawdown test has been generally conducted to evaluate productivity or efficiency of both aquifer and well. In general step-drawdown test, pumping with a low constant discharge rate is conducted in the first stage until the drawdown within the well stabilizes. And then the groundwater is pumped with a higher rate in the next step until the drawdown stabilizes once more. This process is repeated at least three times (steps), with the equal duration. In this paper we tried to review some critical problems related to the step-drawdown test, which were revealed in the process of field practices and analyses. The problems, referred in this paper are mainly associated with the incorrect conceptual approach for analysis and incomplete data collection in the field test.

The Study on the Increased Causes of Chloride ($Cl^{-}$) Concentration of the Samyang 3rd Pumping Station in Cheju Island (제주도 삼양 3수원지의 염소이온농도 상승 원인에 관한 연구)

  • 이성복;김구영;한소라;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.85-94
    • /
    • 1997
  • The study is aimed to find out the causes of rapidly increasing chloride (Cl$^{-}$) concentration of the Samyang 3rd pumping station originated from coastal springs of Cheju since January 1996. The study results show that it was caused by following complicated natural and anthropogenic effects. Due to severe draught in 1996 with total rainfall of only 41.7% of annual mean of the last 36 years (1991 to 1995), it creates firstly), significant decrease of the spring discharges as well decline of the groundwater level at the site . Sea water level was in general 4.4 cm to 12.4 cm higher than the groundwater level of the site during 2 to 3.8 hours at each high tide. Those higher potential head of sea water motivates the sea water intrusion into the fresh water lens through the permeable clinkers and fracture zones situated beneath the existing grouted zone which was installed to a maximum 10 m below the ground water surface, The repeated expansion and contraction of the fresh water lens occurred by periodic changes of the sea water level at high and low tide accelerates secondly the enlargement of the transition zone between the fresh and sea water at the site. The decrease of recharge amount by rainfall shortage creates thirdly the reverse flow at the interface of sea water and groundwater. The repeated groundwater extraction of 2790${\pm}$450 $m^3$d$^{-1}$ at the time of low tide, when the fresh water lens of the sire is under the contraction stare, makes additional drawdown of the ground water level and induces the upconing of salt water into the fresh water lens. The duration of spring discharge whose Cl concentration is less than 150 mg/1 at the low tide measured at the nearby springs was about two hours with discharge rate of 532 $m^3$d$^{-1}$ and after that Cl$^{-}$ concentration is increased up to more than 1900 mg/ι.eased up to more than 1900 mg/L.

  • PDF

Characteristics of Hydraulic Head Variation at Multi-packer Wells in a Coastal Area (해안지역 다중패커공에서의 수리수두 변화 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Ok, Soon-Il
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.291-298
    • /
    • 2015
  • For hydrogeological studies, it is of importance to observe hydraulic head in order to interpret groundwater flow, characterize aquifers, and calibrate groundwater flow model. This study analyzed the zonal variation of hydraulic heads at the eight monitoring wells (GM-1~GM-8) installed with multi-packers in a coastal area and verified vertical and lateral trends of the hydraulic gradients. Hydraulic heads were expressed as the depth of water because the monitoring wells have different depths. The hydraulic gradient at the nearest well (GM-5) shows 0.0142 with increasing trend of hydraulic gradient along depth. This fact indicates typical phenomenon of the discharge area. On the other hand, GM-1 and GM-2 wells in coastal area demonstrate constant hydraulic gradient down to the depth of 100 meters while at the zone of deeper than 100 m the hydraulic gradients illustrate 0.0196 and 0.0735, respectively. This indicates that horizontal flow is dominant at shallower zone than 100 m whereas upward flow is dominant at the zone deeper than 100 m. GM-3 well located farther than the other wells from the coast shows a small hydraulic gradient of 0.0046 that evidences a prevalent horizontal flow between the recharge area and the discharge area.

Suggestion and Evaluation for Prediction Method of Landslide Occurrence using SWAT Model and Climate Change Data: Case Study of Jungsan-ri Region in Mt. Jiri National Park (SWAT model과 기후변화 자료를 이용한 산사태 예측 기법 제안과 평가: 지리산 국립공원 중산리 일대 사례연구)

  • Kim, Jisu;Kim, Minseok;Cho, Youngchan;Oh, Hyunjoo;Lee, Choonoh
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.106-117
    • /
    • 2021
  • The purpose of this study is prediction of landslide occurrence reflecting the subsurface flow characteristics within the soil layer in the future due to climate change in a large scale watershed. To do this, we considered the infinite slope stability theory to evaluate the landslide occurrence with predicted soil moisture content by SWAT model based on monitored data (rainfall-soil moisture-discharge). The correlation between the SWAT model and the monitoring data was performed using the coefficient of determination (R2) and the model's efficiency index (Nash and Sutcliffe model efficiency; NSE) and, an accuracy analysis of landslide prediction was performed using auROC (area under Receiver Operating Curve) analysis. In results comparing with the calculated discharge-soil moisture content by SWAT model vs. actual observation data, R2 was 0.9 and NSE was 0.91 in discharge and, R2 was 0.7 and NSE was 0.79 in soil moisture, respectively. As a result of performing infinite slope stability analysis in the area where landslides occurred in the past based on simulated data (SWAT analysis result of 0.7~0.8), AuROC showed 0.98, indicating that the suggested prediction method was resonable. Based on this, as a result of predicting the characteristics of landslide occurrence by 2050 using climate change scenario (RCP 8.5) data, it was calculated that four landslides could occur with a soil moisture content of more than 75% and rainfall over 250 mm/day during simulation. Although this study needs to be evaluated in various regions because of a case study, it was possible to determine the possibility of prediction through modeling of subsurface flow mechanism, one of the most important attributes in landslide occurrence.

Numerical simulation of groundwater flow in LILW Repository site:II. Input parameters for Safety Assessment (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 2. 처분 안전성 평가 인자)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Koh, Yong-Kwon;Kim, Geon-Young;Kim, Jin-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2008
  • The numerical simulations for groundwater flow were carried out to support the input parameters for safety assessment in LILW repository site. As the input parameters for safety assessment, the groundwater flux into the underground facilities during construction, flow rate through the disposal silo after closure of disposal silo and flow pathway from the disposal silo to discharge area were analyzed using the 10 cases groundwater flow simulations. From the total 10 numerical simulation results, the statistics of estimated output were similar to among 10 cases. In some cases, the analyzed input parameters were strongly governed by locally existed high permeable fracture zone at radioactive waste disposed depth. Indeed, numerical simulation for well scenario as a human intrusion scenario was carried out using the hydraulically severe case model. Using the results of well scenario, the input parameters for safety assessment were also obtained through the numerical simulation.

  • PDF

Characteristics of Waterlevel Fluctuation in Riverside Alluvium of Daesan-myeon, Changwon City (창원시 대산면 강변충적층의 지하수위 변동 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoun-Su;Son, Keon-Tae;Cha, Yong-Hoon;Jang, Seong;Baek, Keon-Ha
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.457-474
    • /
    • 2003
  • This study aims to elucidate characteristics of groundwater level fluctuation at riverbank filtration sites in Daesan-myeon, Changwon City. Groundwater level fluctuation, river water level change and stream-aquifer interaction are very important to estimate optimal discharge rate of the pumping well. Water level contours from February 2003 to October 2003 show normal decreasing trend toward the Nakdong river with the hydraulic gradient of 0.008. However, flow reversion occurs when groundwater is discharged at the pumping wells or rise of the Nakdong river by rainfall. The fluctuation of the Nakdong river ranges 0 - 10 m msl. Autocorrelation analysis was conducted to the groundwater levels measured on the six monitoring wells (DS1, DS2, DS3, DS4, DS6 and DS7). The analyzed waterlevel data can be grouped into three: group 1 (DS1 and DS3) represents strong linearity and long memory effect, group 2 (DS1 and DS6) intermediate linearity and memory, and group 3 (DS4 and DS7) weak linearity and memory. Waterlevels of group 1 wells are relatively closely related to the change of river-water level. Those of group 2 wells are largely affected by the pumping and the river-water level, and those of group 3 wells are strongly linked to pumping.

Short Term Runoff Characteristics Change of Stream Water Quality with Different Rainfall Events in Planted Coniferous Forest (침엽수 인공림에서 강우사상별 계류수 수질의 유출특성 변화)

  • Kim, Jaehoon;Choi, Hyung Tae;Yoo, Jae Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.917-922
    • /
    • 2015
  • This study was carried out to investigate solutes concentration change with respect to discharge change in coniferous forest experiment watershed in Gyeonggi-do, Korea. From 2005 to 2008. Precipitation, discharge, solutes has been analyzed from 23 precipitation events. The results showed that low API induced low discharge. $NH_4{^+}$, $K^+$, and $Ca^{2+}$ were indicated by clockwise and $Cl^-$ and $NO_3{^-}$ were represented by counterclockwise hysteresis loop. ${SO_4}^{2-}$, $Na^+$, $Mg^{2+}$ showed no hysteresis loop pattern. $Cl^-$, $Na^+$, $NH_4{^+}$ was relatively constant due to groundwater during precipitation, $NO_3{^-}$ was increased due to soil water compared to early precipitation. $Cl^-$, ${SO_4}^{2-}$, $Na^+$, $Mg^{2+}$, $Ca^{2+}$ was diluted with respect to increased discharge and $NO_3{^-}$ was diluted in early precipitation and then increased in the end. $NO_3{^-}$ and $Ca^{2+}$ eluviated in early precipitation. This characteristics was presumed by the effect of API, discharge and ground water.

Application of Geophysical Methods to Detection of a Preferred Groundwater Flow Channel at a Pyrite Tailings Dam (황철석 광산 광미댐에서의 지하수흐름 경로탐지를 위한 물리탐사 적용)

  • Hwang, Hak Soo
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.137-142
    • /
    • 1997
  • At the tailings dam of the disused Brukunga pyrite mine in South Australia, reaction of groundwater with the tailings causes the formation and discharge of sulphuric acid. There is a need to improve remediation efforts by decreasing groundwater flow through the tailings dam. Geophysical methods have been investigated to determine whether they can be used to characterise variations in depth to watertable and map preferred groundwater flow paths. Three methods were used: transient electromagnetic (TEM) soundings, direct current (DC) soundings and profiling, and self potential (SP) profiling. The profiling methods were used to map the areal extent of a given response, while soundings was used to determine the variation in response with depth. The results of the geophysical surveys show that the voltages measured with SP profiling are small and it is hard to determine any preferred channels of groundwater flow from SP data alone. Results obtained from TEM and DC soundings, show that the DC method is useful for determining layer boundaries at shallow depths (less than about 10 m), while the TEM method can resolve deeper structures. Joint use of TEM and DC data gives a more complete and accurate geoelectric section. The TEM and DC measurements have enabled accurate determination of depth to groundwater. For soundings centred at piezometers, this depth is consistent with the measured watertable level in the corresponding piezometer. A map of the watertable level produced from all the TEM and DC soundings at the site shows that the shallowest level is at a depth of about 1 m, and occurs at the southeast of the site, while the deepest watertable level (about 17 m) occurs at the northwest part of the site. The results indicate that a possible source of groundwater occurs at the southeast area of the dam, and the aquifer thickness varies between 6 and 13 m. A map of the variation of resistivity of the aquifer has also been produced from the TEM and DC data. This map shows that the least resistive (i.e., most conductive) section of the aquifer occurs in the northeast of the site, while the most resistive part of the aquifer occurs in the southeast. These results are interpreted to indicate a source of fresh (resistive) groundwater in the southeast of the site, with a possible further source of conductive groundwater in the northeast.

  • PDF

A Study on the Flow and Dispersion in the Coastal Unconfined Aquifer (Development and Application of a Numerical Model) (해안지역 비피압 충적 대수층에서의 흐름 및 분산(수치모형의 개발 및 적용))

  • Kim, Sang Jun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.61-72
    • /
    • 2016
  • In Korea, the aquifers at the coastal areas are mostly shallow alluvial unconfined aquifers. To simulate the flow and dispersion in unconfined aquifer, a FDM model has been developed to solve the nonlinear Boussinesq equation. Related analysis and verification have been executed. The iteration method is used to solve the nonlinearity, and the model shows 3-D shape because it is a 2-D y model that consider the undulation of water table and bottom. For the verification of the model, the output of flow module is compared to the 1-D analytic solution of Lee (1989) which have the drawdown or uplift boundary condition, and the two results show almost the same value. and the mass balance of dispersion module shows about 10% error. The developed model can be used for the analysis and design of the flow and dispersion in the unconfined aquifers. The model has been applied to the estuary area of Ssangcheon watershed, and the parameters have been deduced as a result : hydraulic conductivity is 90 m/day, and longitudinal dispersivity is 15 m. And the analysis with these parameters shows that the wells are situated in the influence circle of each others except for No. 7 well. Groundwater discharge to sea is $3700m^3/day$. And the chlorine ion ($cl^-$) concentration at the pumping wells increase at least 1000 mg/L if groundwater dam is not exist, so the groundwater dam plays an important role for the prevention of sea water intrusion.