• Title/Summary/Keyword: groundwater discharge

Search Result 237, Processing Time 0.027 seconds

The Influence of the Surrounding Groundwater by Groundwater Discharge from the Subway Tunnel at Suyeong District, Busan City (부산 수영구 지하철 터널에서의 지하수 유출이 주변 지하수에 미치는 영향)

  • Chung, Sang-Yong;Kim, Tae-Hyung;Park, Nam-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.28-36
    • /
    • 2012
  • This study carried out several kinds of investigations such as geology, hydrogeology, groundwater level and quality, surface-water quality, and the quantity and quality of groundwater discharge from the subway to identify the causes of groundwater contamination around the subway tunnel at Suyeong District in Busan City. Geostatistical analyses were also conducted to understand the characteristics of groundwater level and quality distributions. There are Kwanganri Beach and Suyeong River in the study area, which are basically influenced by seawater. The total quantities of groundwater utilization and groundwater discharge from the subway tunnel in Suyeong District are 2,282,000 $m^3$/year, which is 2.4 times larger than the sustainable development yield of groundwater. The lowest groundwater level around the subway tunnel is about 32 m below the mean sea-level. The large drawdown of groundwater led to the inflow of seawater and salinized river water toward the subway tunnel, and therefore the quality of groundwater didn't satisfy the criteria of potable, domestic, agricultural and industrial uses. Distribution maps of groundwater level and qualities produced by kriging were very useful for determining the causes of groundwater contamination in the study area. The distribution maps of electrical conductivity, chloride and sulfate showed the extent of seawater intrusion and the forceful infiltration of the salinized Suyeong River. This study revealed that seawater and salinized river water infiltrated into the inland groundwater and contaminated the groundwater around the subway tunnel, because the groundwater level was seriously drawdowned by groundwater discharge from the subway tunnel. The countermeasure for the minimization of groundwater discharge from the subway tunnel is necessary to prevent the groundwater obstacles such as groundwater depletion, groundwater-quality deterioration, and land subsidence.

Characterizing Groundwater Discharge and Radon Concentration in Coastal Waters, Busan City (부산 해안지역의 물의 라돈 농도와 지하수 유출 특성)

  • Ok, Soon-Il;Hamm, Se-Yeong;Lee, Yong-Woo;Cha, Eun-Jee;Kim, Sang-Hyun;Kim, In-Soo;Khim, Boo-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.53-66
    • /
    • 2011
  • Groundwater which infiltrated in recharge areas discharges in the forms of evapotranspiration, baseflow to streams, groundwater abstraction and eventually flows into the sea. This study characterized radon-222 concentration and electrical conductivity (EC) in coastal groundwater discharge, well groundwater, Ilkwang Stream water, and seawater in the coastal area of Busan Metropolitan City and subsequently estimated groundwater discharge rate to the sea. The median value of Rn-222 concentration is highest in well groundwater (18.36 Bq/L), and then decreases in the order of coastal groundwater discharge (15.92 Bq/L), Ilkwang Stream water (1.408 Bq/L), and seawater (0.030 Bq/L). The relationship between Rn-222 concentration and EC values is relatively strong in well groundwater and then in seawater. However, the relationship is not visible between coastal groundwater discharge and Ilkwang Stream water. The groundwater discharge rate to the sea is estimated as $3,130m^3$/day by using radon mass budget model and $16,788m^3$/day by using Darcy's law.

Groundwater Recharge and Discharge in the Urban-rural Composite Area (도농복합지역 지하수 함양과 배출에 대한 연구)

  • Lee, Byung-Sun;Hong, Sung-Woo;Kang, Hee-Jun;Lee, Ji-Seong;Yun, Seong-Taek;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • This study was conducted to identify groundwater recharge and discharge amounts of a representative urban-rural composite area located in Yongin city, Kyounggi-do, Korea. Groundwater recharge would be affected by mainly two processes in the study area: rainfall and leakage from public water pipelines including water-supply and sewage system. Groundwater recharge rate was estimated to be 13.5% by applying annual groundwater level data from two National Groundwater Monitoring Stations to the master regression curve method. Subsequently, the recharge amounts were determined to be $13,253{\times}10^3m^3/yr$. Leakage amounts from water-supply and sewage system were estimated to be $3,218{\times}10^3$ and $5,696{\times}10^3m^3/yr$, respectively. On the whole, a total of the recharge amounts was $22,167{\times}10^3m^3/yr$, of which 60% covers rainfall recharge and 40% pipeline leakage. Groundwater discharge occurred through three processes in the composite area: baseflow, well pumping, and discharge from urban infrastructure including groundwater infiltration into sewage pipeline and artificial extraction of groundwater to protect underground facilities from submergence. Discharge amounts by baseflow flowing to the Kiheung agricultural reservoir and well pumping were estimated to be $382{\times}10^3$ and $1,323{\times}10^3m^3/yr$, respectively. Occurrence of groundwater infiltration into sewage pipeline was rarely identified. Groundwater extraction amounts from the Bundang subway line as an underground facility were identified as $714{\times}10^3m^3/yr$. Overall, a total of the discharge amounts was determined to be $2,419{\times}10^3m^3/yr$, which was contributed by 29% of artificial discharge. Even though groundwater budget of the composite area was identified to be a surplus, it should be managed for a sound groundwater environment by changing deteriorated pipelines and controlling artificial discharge amounts.

Clustering Analysis with Spring Discharge Data and Evaluation of Groundwater System in Jeju Island (용천수 유출량 클러스터링 해석을 이용한 제주도 지하수 순환 해석)

  • Kim Tae-Hui;Mun Deok-Cheol;Park Won-Bae;Park Gi-Hwa;Go Gi-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.296-299
    • /
    • 2005
  • Time series of spring discharge data in Jeju island can provide abundant information on the spatial groundwater system. In this study, the classification based on time series of spring discharge was performed with clustering analysis: discharge rate and EC. Peak discharges are mainly observed in august or september. However, double peaks and late peaks of discharge are also observed at a plenty of springs. Based on results of clustering analysis, it can be deduced that GH model is not appropriate for the conceptual model of Groundwater system in Jeju island. EC distributions in dry season are also support the conclusion.

  • PDF

Search of submarine discharge locations with multi-temporal thermal infrared images and ground radar surveys

  • Onishi K.;Sairaiji M.;Rokugawa S.;Tokunaga T.;Sakuno Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.685-688
    • /
    • 2004
  • Fresh water discharge from the sea floor strongly affects a coastal ecology and the diffusion of contaminants. Much fresh water discharge has been found in the edge of Kurobe alluvial fan, in which annual rainfall is over 4000mm and there is abundant groundwater. However, it is difficult to find the groundwater discharge, thus the search of possible areas with some remote sensing tools is required. Because the temperature of the discharge point is relatively low compared with the surrounding sea water surfaces, there is a possibility to detect the area as an irregular zone of thermal infrared images. Two anomalous temperature zones, which have no surface streams from rivers, are detected by ASTER thermal-infrared images. One of them was verified as the groundwater discharge point by dives. In addition, the distribution of water table under the land side of the two areas is also detected as irregular zones by a ground-penetrating radar

  • PDF

강변여과수 취수에 따른 지하수위의 계절적인 변동 특성

  • Jeong Jae-Yeol;Ham Se-Yeong;Lee Jeong-Hwan;Kim Hyeong-Su;Ryu Sang-Hon;Kim Tae-Won;Kim Mun-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.68-71
    • /
    • 2006
  • Seasonal fluctuation of groundwater level by pumping amount and stream discharge at the riverbank filtrate site adjacent to the Nakdong River in Daesan-Myeon was characterized. Groundwater level fluctuation shows increase in wet season (June, July, August and September) and decrease in dry season (the other months). Seasonal variation of pumping amount shows similar trend to the groundwater fluctuation due to higher consumption of potable water in summer. The relation of specific capacity, Nakdong River and pumping quantity was analyzed. The logarithmic relationship between specific capacity and the stream discharge gives high correlation coefficient, 0.96. This fact indicates that the increase of stream discharge rate reduces the rate of drawdown in the pumping area in wet season.

  • PDF

A Study on the Development of Regional Master Recession Curve Model

  • Lee, Jae-Hyoung;Oh, Nam-Sun;Lee, Hee-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.61-71
    • /
    • 2001
  • A regional master recession curve model to predict groundwater discharges in a given basin was presented. Considering a stream-aquifer system, both theoretical and experimental baseflow equations were compared and a practical groundwater discharge equation was derived, The groundwater discharge equation was expanded and transformed to the discharge equation at the basin exit. For practical use, the equation was expressed as a function of watershed area, the mean slope of basin and the recession constant. To verify the model, the model was applied to Ssang-chi basin where long-term and temporal hydrological data at the upper basin were collected. Our results show that a master recession curve of unmeasured area can be predicted.

  • PDF

Resistivity Exploration of Submarine Groundwater Discharge in Busan Area (부산지역의 해저용출수 전기비저항탐사)

  • Park, Jun-Kyu;Kim, Sung-Wook;Lee, Jin-Hyuk;Kim, In-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.711-716
    • /
    • 2010
  • This study selected the promising area of submarine groundwater discharge(SGD) that flows into the sea following unconfined physical aquifer through the electrical resistivity survey of the land and sea. The submarine groundwater discharge(SGD) mostly flows into the sea following fracture zones, and the detection of the fault zone becomes the important guideline of groundwater discharge. Electrical sounding of the land assessed the groundwater flow and integration possibility according to the location of a fault that is a water path between underground reservoir and surface water as well as a rock fracture. In addition, the study conducted sea electrical resistivity to expand the area with high potential and selected the expected water potential groundwater area. The areas of the study were Busan and coastal areas, and for the terrain analysis, the candidates of the ground exploration were selected after analyzing lineaments that is expanded to coast direction.

  • PDF

Discharge Characteristics of the Chusan Spring, Ulleung Island (울릉도 추산용출소의 용출 특성)

  • Cho, Byong-Wook;Lee, Byeong-Dae
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.37-45
    • /
    • 2018
  • The source of Chusan Spring water in the Ulleungdo is the precipitation in the Nari caldera basin, which permeates in the Trachitic pumice and tuff area and moves downward, outflowing at the lithologic boundary between the trachyte and Nari tuff. It is known that the discharge rate of the Chusan Spring is large enough to be used for the small hydroelectric power generation, but the exact discharge rate and hydrogeologic characteristics have not been known. The discharge rates of the Spring were measured 11 times, which ranged from $15,220m^3/d$ to $36,278m^3/d$. The discharge rates, measured by the automatic level recorder, for two-year period, were $20,000{\sim}38,000m^3/d$. The variation of discharge rates did not coincide with rainfall event, but showed daily increases of $3,000{\sim}5,000m^3/d$. The annual discharge rate excluding the evapotranspiration and the surrounding stream discharge corresponded to 70.6% of the annual precipitation of the recharge area. Therefore, meteorological observations at the Nari basin, rather than the Ulleung-do meteorological station, are more appropriate to properly interpret the discharge characteristics of the Chusam Spring and the recharge rate of the basin.

Estimating Groundwater Level Change Associated with River Stage and Pumping using Time Series Analyses at a Riverbank Filtration Site in Korea

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoung-Soo;Lee, Soo-Hyoung;Park, Heung-Jai
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1135-1146
    • /
    • 2017
  • At riverbank filtration sites, groundwater levels of alluvial aquifers near rivers are sensitive to variation in river discharge and pumping quantities. In this study, the groundwater level fluctuation, pumping quantity, and streamflow rate at the site of a riverbank filtration plant, which produces drinking water, in the lower Nakdong River basin, South Korea were interrelated. The relationship between drawdown ratio and river discharge was very strong with a correlation coefficient of 0.96, showing a greater drawdown ratio in the wet season than in the dry season. Autocorrelation and cross-correlation were carried out to characterize groundwater level fluctuation. Autoregressive model analysis of groundwater water level fluctuation led to efficient estimation and prediction of pumping for riverbank filtration in relation to river discharge rates, using simple inputs of river discharge and pumping data, without the need for numerical models that require data regarding several aquifer properties and hydrologic parameters.