• Title/Summary/Keyword: grounding system

Search Result 467, Processing Time 0.029 seconds

Analysis of the Frequency Dependent Characteristics of Ground Impedance of a Ground Rod (봉상접지전극의 접지임피던스의 주파수의존성의 분석)

  • 이복희;엄주홍
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.426-432
    • /
    • 2004
  • This paper presents a systematic approach of measurement, modeling and analysis of grounding system impedance in the field of lightning protection system and intelligent power equipments. The measurement and analysis system of ground impedance is based on a computer aided technique. The magnitude and phase of ground impedance were determined by the novel measurement and analysis using the revised fall-of-potential method. The ground impedances of the ground rod of 50 m long are considerably dependent on the frequency. The ground impedance is mainly resistive in the frequency range of 3-20 kHz. At higher frequencies, the reactive components of the ground impedances are no longer negligible and the inductance of the ground rod was found to be the core factor deciding the ground impedance. Although the steady-state ground resistance of the ground rod of 50 m was less than that of the ground rod of 10 m, the ground impedances of the ground rod of 50 m over the frequency range of more than 60 kHz were much greater than those of the ground rod of 10 m. Furthermore, the equivalent circuit model based on the measured data was proposed. and the calculated results were in approximately agreement with the measured data.

Factors Affected the Accuracy of Lightning Current Measuring System (뇌격전류 측정의 정확도에 영향을 미치는 요인)

  • Lee, B.H.;Chang, K.C.;Kang, S.M.;Eom, J.H.;Jeong, K.J.;Sim, E.B.;Woo, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1674-1676
    • /
    • 2003
  • The factors affecting the accuracy of lightning current measuring system are figured out the materials and length of down-conductor, and impedance matching between grounding resistance and characteristic impedance of cable. The cable with the low characteristic impedance used to transfer the lightning current from the top of the tower is too long to measure the waveform of lightning current, exactly. Especially, the height of the tower can cause the change of front time and magnitude of lightning stroke current. Basically, in this experiment. It was found that the magnitude and rise time of the lightning current are extremely dependant in the length of down-conductor in lightning current measuring system.

  • PDF

Effect Analysis for Inequality of Basic Grounding in Bimodal Tram (바이모달 트램의 기준접지 불균등전위에 따른 영향분석)

  • Lee, Kang-Won;Mok, Jai-Kyun;Jang, Se-Ky
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.78-81
    • /
    • 2011
  • Generally, vehicle is insulated from the earth by rubber tire which is intrinsically the insulation material. The electrical ground of vehicle was floated in the sense of electric potential over the electric power sources. First of all, the floated electrical ground of vehicle should be equipotentially connected with the (-) line of electrical equipment. Bimodal tram has the different kinds of electric system. They must be kept insulated to each other electrically. When there is some unbalanced event or connection between them, it will invoke some errors or breakdown to electrical devices including sensors and actuators. This paper has investigated the floating ground effect of bimodal tram built with composite body and shown the effect according to the unbalanced ground of vehicle and the connection between different electric systems.

  • PDF

Comparison of Leakage Current in Various Photovoltaic Inverter Topologies (태양광 인버터 회로구조에 따른 누설전류 비교)

  • Yoon, Hanjong;Cho, Younghoon;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.105-106
    • /
    • 2016
  • In low-power grid-connected photovoltaic(PV) system, Single-phase transformerless full-bridge inverter is commonly used. However in transformerless photovoltaic application, the ground parasitic capacitance created by grounding between PV panels and ground. This ground parasitic capacitance inject additional current into the inverter, these currents cause electromagnetic interference problem, safety problem and harmonics problem in PV applications. In order to eliminate the ground current, This paper propose various inverter topologies in PV applications. These proposed inverter topologies are verified through simulation using PSIM.

  • PDF

A Study on the Countermeasure and the Effect of Countermeasure about Trouble-Examples by Noise in Plants (플랜트에서의 노이즈장해 사례별 대책과 그 효과에 대한 연구)

  • 유상봉;정태호;이기홍
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.75-80
    • /
    • 2001
  • This paper represents the analysis and countermeasure about the causes of various trouble-examples by the noise in plants. These kinds of troubles came out the mis-operation and damage in various kinds of operating-facilities. The cause-analysis is following as: 1) the inappropriate-applications of protection devices installed to protect the noise. 2) the causes of voltage difference in separate ground systems. Therefore, To resolve the noise problems in plants, This paper proposed the two kind solutions to a problem. 1) The installation of appropriate noise protection devices and 2) The organization of equal-voltage by the common grounding system.

  • PDF

Protection of MOV Thermal Runaway and Safety Improvement of SPD using Built-in Instantaneous Trip Device (내장 순시 트립장치를 이용한 MOV의 열폭주 보호와 SPD의 안전성 개선)

  • Kim, Ju-Chul;Jeon, Joo-Sool;Ki, Che-Ouk;Choi, Gyung-Ray;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • SPDs are increasingly being used against lightning and switching surge according to the applicable revised standard and equipotential grounding system. SPDs are equipped usually with a MOV voltage regulating element. The MOV, however, always is exposed to the danger of thermal runaway resulting from inrushing temporary overvoltage and deterioration. In this paper, the authors made two prototype SPDs built-in Instantaneous trip device and analyzed their limiting voltage through test of the MOV breakdown. As the result of the analysis, the SPDs built-in Instantaneous trip device was proven to be effective for protecting MOV against thermal runaway and Instantaneous trip device react for limiting voltage is considered that is applicable to SPD.

Ground impedance of deeply driven rod in high frequency domain (고주파수 영역에서 심매설 접지전극의 접지임피던스)

  • Lee, Bok-Hee;Lee, Tae-Hyung;Lee, Su-Bong;Jeong, Hyun-Wook;Jeong, Dong-Cheol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.247-250
    • /
    • 2004
  • A ground resistance is a good index of performance in a grounding system, but it does not reflect the performance in transient states. Recently long vertical ground rods in urban areas are often installed. But because of the inductance of long ground rods the ground impedance at high frequency might be greater than its resistance at low frequency. In this paper, a ground impedance of deeply driven ground rod has been measured in the frequency range from 10 kHz to 50 MHz. As a result, the ground impedances of a deeply driven ground rods are almost constant at the frequency range less than 100 kHz. However at high frequency the ground impedance showed the strong frequency dependance.

  • PDF

Characteristics for Ground Impedance of Counterpoise according to Position of Auxiliary Probe and Frequency (보조전극의 배치 및 주파수에 따른 매설지선의 접지임피던스 특성)

  • Gil, Hyoung-Jun;Kim, Dong-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.33-37
    • /
    • 2012
  • This paper describes the characteristics for ground impedance of counterpoise according to position of auxiliary probe and frequency using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position of auxiliary probes. In order to analyze the effects of ground impedance due to the distance of the current probe and frequency, ground impedances were measured in case that the distance of current probe was located from 10[m] to 100[m] and the measuring frequency was ranged in 55 [Hz], 128[Hz], 342[Hz], and 513[Hz]. The results could be help to determine the position of auxiliary probe when the ground impedance was measured at grounding system.

Analysis on the Effects of the Induced Noise Voltage with the Grounded or Non-grounded Cable Sheath in the Power Inducting Situation (전력 유도 발생 시 케이블 쉬스 접지 여부에 따른 유도 잡음 전압 영향 분석)

  • Lee, Sang-Mu;Choi, Mun-Hwan;Cho, Pyoung-Dong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.285-288
    • /
    • 2007
  • This article presents the change characteristics of induced noise whether the sheath layer of the cable is grounded or not. As what affects the induced noise, there are power influence or longitudinal transverse voltages and its weighted filtered voltage. The sheath ground is basicaly predicted to have the effects of alleviation on the power influence. But practically the effects may not happen in the case of common cable's sheath layer. Rather there are cases that the ground of sheath affects so that the noise level could increase. So we need to scrutinize the effects of the sheath gorund in the measures for the protection against electromagnetic induction by powerline or traction line system. And the evaluation of using the designated shielding purpose cable is needed.

  • PDF

A Study for a Trouble of Grounding System & Electric Noise Diagnosis (접지 트러블 및 노이즈 진단 연구)

  • Cho, Dae-Hoon;Lee, Ki-Sik;Jung, Chul-Hee;Ryu, Chung-Hee;Park, Woo-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2156-2159
    • /
    • 2011
  • 본 연구에서는 접지시스템으로 부터 다양한 서지 및 노이즈 신호를 측정 진단하여 시스템에 오동작을 유발하는 원인을 규명하여 안정된 설비 운용을 확보한다. 오동작 및 설비 손상의 원인이 되는 노이즈 전류 및 간섭 현상을 제거하기 위해 운용중인 접지시스템의 성능 및 구조적 문제점을 데이터로 실측하였다. 진단 분석 결과를 이용하여 개선된 성능의 접지시스템 및 배선 구조를 제안하여 시공하였고, 개선 효과를 검증하기위해 시공 후 설비의 운용 상태 하에 접지 노이즈 신호를 재 측정하여 개선 전 측정 결과와 비교 분석하여 개선된 성능을 최종 확인하였다.

  • PDF