• Title/Summary/Keyword: ground station

Search Result 905, Processing Time 0.028 seconds

Interference analysis on Japanese radio source for KOMPSAT TT&C ground system

  • Park, Durk-Jong;Ahn, Sang-Il
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.2-36.2
    • /
    • 2008
  • This paper presents the impact of Japanese radio source on the S-Band communication between KOMPSAT-2 satellite and TT&C ground system. Major specifications such as transmitting EIRP (Effective Isotropic Radiated Power) and location of Japanese terrestrial station were informed from Radio Research Laboratory in Korea Communication Commission. To estimate path loss in S-Band, the distance between Japanese station and TT&C ground system was obtained by using COTS (Commercial Off-The-Shelf) software. After that the signal strength of Japanese radio source placed at the TT&C ground system was calculated from link parameters such as transmitting EIRP, path loss, and receiving antenna gain. Consequently, this paper shows that the degradation caused by Japanese radio source is acceptable to TT&C ground system for satellite operation.

  • PDF

Ground Penetrating Radar Imaging of a Circular Patterned Ground near King Sejong Station, Antarctica

  • Kim, Kwansoo;Ju, Hyeontae;Lee, Joohan;Chung, Changhyun;Kim, Hyoungkwon;Lee, Sunjoong;Kim, Jisoo
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.257-267
    • /
    • 2021
  • Constraints on the structure and composition of the active layer are important for understanding permafrost evolution. Soil convection owing to repeated moisture-induced freeze-thaw cycles within the active layer promotes the formation of self-organized patterned ground. Here we present the results of ground penetrating radar (GPR) surveys across a selected sorted circle near King Sejong Station, Antarctica, to better delineate the active layer and its relation to the observed patterned ground structure. We acquire GPR data in both bistatic mode (common mid-points) for precise velocity constraints and monostatic mode (common-offset) for subsurface imaging. Reflections are derived from the active layer-permafrost boundary, organic layer-weathered soil boundary within the active layer, and frozen rock-fracture-filled ice boundary within the permafrost. The base of the imaged sorted circle possesses a convex-down shape in the central silty zone, which is typical for the pattern associated with convection-like soil motion within the active layer. The boundary between the central fine-silty domain and coarse-grained stone border is effectively identified in a radar amplitude contour at the assumed active layer depth, and is further examined in the frequency spectra of the near- and far-offset traces. The far-offset traces and the traces from the lower frequency components dominant on the far-offset traces would be associated with rapid absorption of higher frequency radiowave due to the voids in gravel-rich zone. The presented correlation strategies for analyzing very shallow, thin-layered GPR reflection data can potentially be applied to the various types of patterned ground, particularly for acquiring time-lapse imaging, when electric resistivity tomography is incorporated into the analysis.

Playback Downlink and Telecommand Uplink Channel Design for Transportable KOMPSAT Ground Station (이동형 다목적실용위성 소형 관제국의 Playback 하향 링크 및 원격 명령 상향 링크 채널 설계)

  • Ahn, Sang-Il;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.4
    • /
    • pp.396-405
    • /
    • 2009
  • This paper describes playback downlink and telecommand uplink channel design performed for a transportable small-sized KOMPSAT(Korea Multi-Purpose Satellite) ground station. As a result of downlink channel design, required receiving performance was calculated from the threshold signal-to-noise ratio of playback signal and it was revealed that this performance can be guaranteed in 1.5 m ground station with 6.5 dB/K of G/T. For the uplink channel design, 40 dBW of EIRP was derived from the threshold signal-to-noise ratio of telecommand signal received at on-board receiver. The implemented small-sized ground station based on design was evaluated to be fully acceptable for KOMPSAT TT&C(Telemetry, Tracking and Command) system and playback downlink design without taking account of additional 3 dB system link margin was shown to be effective because it had provided constantly initial channel performance without any remarkable degradation over several years of tests with KOMPSAT and KOMPSAT-2, for both uplink and playback downlink in the elevation angle above $10^{\circ}$.

Analysis on Receiving Performance Degradation of Ground Station in Lunar Mission (달 잡음에 의한 지상 시스템 수신 성능 열화 분석)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.208-216
    • /
    • 2014
  • Ground station in lunar mission is responsible to receive telemetry signal including sensor data from lunar orbiter and/or lander. At preliminary stage of developing this ground station, receiving performance such as antenna size and noise temperature should be designed on the basis of link budget analysis. When the antenna of ground station is pointing to the moon to communicate with lunar orbiter and/or lander, noise level is supposed to be increasing due to the lunar flux density. It means that the moon is working as a noise source to degrade receiving performance when antenna is pointing to the moon. Antenna noise temperature contributed by the moon was firstly calculated and secondary validated by using test configuration in this paper. Consequently, it was shown that antenna noise temperature caused by the moon was quietly matched with measured one and G/T degradation of receiving system in lunar mission can be calculated depending on antenna size and frequency.

Development of Seismic Monitoring System for Natural Gas Governor Station and It's Field Application to Minimize Earthquake Damage (지진 피해 최소화를 위한 지진 감지 시스템 개발 및 현장적용 연구)

  • Yoo H.R.;Park S.S.;Park D.J.;Koo S.J.;Cho S.H.;Rho Y.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.19-25
    • /
    • 2000
  • In order to prevent secondary disaster such as gas explosion which comes after a devastating magnitude earthquake, the seismic monitoring and transmission system for natural gas governor station was developed. To measure ground motions precisely and operate the seismic monitoring system efficiently, the position and method of accelerometer installation were recommended by the analysis of ground noise patterns of governor station. For making a decision on prompt shut-off of gas supplies in the event of a great earthquake, the real-time calculation algorithm of PGA(Peak Ground Acceleration) and SI(Spectrum Intensity) were developed and it has been implemented in the seismic monitoring and transmission system.

  • PDF

Interface on ground station to shorten the delivery time for archiving order for satellite images (획득영상 배포시간 단축을 위한 지상국 인터페이스)

  • Myung-Jun Lee;Gap-Ho Jeon;Myeong-Shin Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.34-40
    • /
    • 2024
  • Satellite images from Earth-orbit satellites are widely utilized in both the public sector and commercial industry. To achieve a high-quality satellite image service, satellite operation focuses on accurately transmitting images and information of space to users. In particular, the delivery time from ground system to user is the core factor of the quality of a ground station service. Thus, much development is underway to specifically shorten the time required for distribution to users. In this paper, we introduce an interface design of a ground station to shorten the delivery time from order to distribution, related to the archiving order of satellite images.

Experiments of Free-Space Optical Communication for Optical Ground Station (광통신 지상국 구축을 위한 자유공간 광통신 실험)

  • Taewoo Kim;Wonseok Kang;Sang Hoon Oh;Yong-sun Park;Jung-Hoon Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.74-85
    • /
    • 2024
  • As the limitations of conventional radio communications between satellites and the ground become apparent, various experiments are being conducted around the world to overcome them with space laser communication. In this study, we address the development of our own optical communications terminal (OCT) and optical ground station (OGS) and the experiments of free-space optical communication (FSOC) using them. Using a 30 mm-diameter OCT and a 250 mm-diameter portable OGS telescope, as well as commercial 10 Gbps SFP+ modules and media converters, we successfully transmitted and received 4K high-definition multimedia interface (HDMI) signals through 1,550 nm optical laser beam. The transmission and reception distances of the experiment were 3, 9, and 20 km, respectively, and the received signal strength at each distance was +6.1, -2.8, and -10.9 dBm, respectively. It was demonstrated that the 4K HDMI video lasted for over 10 minutes.

Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation

  • Kwon, Sun Yong;Yoo, Mintaek;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Korean society experienced successive earthquakes exceeding 5.0 magnitude in the past three years resulting in an increasing concern about earthquake stability of urban infrastructures. This study focuses on the significant aspects of earthquake risk assessment for the cut-and-cover underground railway station based on two-dimensional dynamic numerical analysis. Presented are features from a case study performed for the railway station in Seoul, South Korea. The PLAXIS2D was employed for numerical simulation and input of the earthquake ground motion was chosen from Pohang earthquake records (M5.4). The paper shows key aspects of earthquake risk for soil-structure system varying important parameters including embedded depth, supported ground information, and applied seismicity level, and then draws several meaningful conclusions from the analysis results such as seismic risk assessment.

Development of Ground Antenna Tracker for Drones Based on Satellite System (위성시스템 기반 드론용 지상 안테나 트래커 개발)

  • Se-jun Kim;Jong-pil Choi;Dong-huyn Oh;Da-jin-sol Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.740-745
    • /
    • 2023
  • This study proposes the development of an antenna tracker system using a satellite system to stabilize the communication status of drones and extend the communication distance. The location information of the drone and the ground station was used to maximize communication gain in the general fixed antenna method between the ground station and the drone. We developed a tracker system that can automatically and continuously aim the ground station's antenna at the drone. It is expected that the use of antenna trackers will improve the stabilization of communication conditions and expand the communication distance, thereby leading to the advancement of the drone industry.