• Title/Summary/Keyword: ground model test

Search Result 1,134, Processing Time 0.033 seconds

Crosswind effects on high-sided road vehicles with and without movement

  • Wang, Bin;Xu, You-Lin;Zhu, Le-Dong;Li, Yong-Le
    • Wind and Structures
    • /
    • v.18 no.2
    • /
    • pp.155-180
    • /
    • 2014
  • The safety of road vehicles on the ground in crosswind has been investigated for many years. One of the most important fundamentals in the safety analysis is aerodynamic characteristics of a vehicle in crosswind. The most common way to study the aerodynamic characteristics of a vehicle in crosswind is wind tunnel tests to measure the aerodynamic coefficients and/or pressure coefficients of the vehicle. Due to the complexity of wind tunnel test equipment and procedure, the features of flow field around the vehicle are seldom explored in a wind tunnel, particularly for the vehicle moving on the ground. As a complementary to wind tunnel tests, the numerical method using computational fluid dynamics (CFD) can be employed as an effective tool to explore the aerodynamic characteristics of as well as flow features around the vehicle. This study explores crosswind effects on a high-sided lorry on the ground with and without movement through CFD simulations together with wind tunnel tests. Firstly, the aerodynamic forces on a stationary lorry model are measured in a wind tunnel, and the results are compared with the previous measurement results. The CFD with unsteady RANS method is then employed to simulate wind flow around and wind pressures on the stationary lorry. The numerical aerodynamic forces are compared with the wind tunnel test results. Furthermore, the same CFD method is extended to investigate the moving vehicle on the ground in crosswind. The results show that the CFD results match with wind tunnel test results and the current way using aerodynamic coefficients from a stationary vehicle in crosswind is acceptable. The CFD simulation can provide more insights on flow field and pressure distribution which are difficult to be obtained by wind tunnel tests.

Accuracy Analysis of DEM Generated from SPOT-5 Satellite Imagery (SPOT-5 위성영상으로부터 DEM 생성 및 정확도 분석)

  • 정태식;이성순;이진덕
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.173-178
    • /
    • 2004
  • This paper presents photogrammetric processing to generate digital elevation models and deals with the accuracy potential of SPOT-5 HRG supermode imagery for DEM generation. The DEMs obtained from digital topographic maps of 1/5000 scale were used as the refernce DEM data. DEMs extracted from HRG dats were compared with digital topograpic map DEMs on severed test sections. And digital surface model(DSM), refering to above the ground like buildings, was produced about the test built-up area.

  • PDF

The behavior of tunnel and ground according to the loading of building construction on the ground (터널 상부 지반에 시공되는 건물 하중에 따른 터널 및 주변지반의 거동)

  • Cha, Seok-Kyu;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.731-742
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structure. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process is repeated in the lower ground of the excavation so that it can affect existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effects of the ground excavation and the new structure load on the existing tunnel were investigated by large - scale experiment and numerical analysis. For this purpose, a large model tester with a size reduced to 1/5 of the actual size was constructed, and model tests and numerical analyzes were carried out to investigate the effects of the excavation of the body ground by maintaining the distance between the excavation floor and the tunnel ceiling constant, The impacts were identified. As a result of the study, it was confirmed that the deeper the excavation depth, the larger the influence on the existing tunnel. At the same distance, it was confirmed that the tunnel displacement increased with the increase of the building load, and the ground stress increased up to 2.4 times. From this result, it was confirmed that the effect of the increase of the underground stress on the existing tunnel is affected by the increase of the building load, and the influence of the underground stress is decreased from the new load width above 3.0D.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Yoo, Min-Taek;Yang, Eui-Kyu;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.188-197
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models consisting of a single-pile and a $4{\times}2$-pile group were tested twice; first using Jumoonjin sand, and second using Australian Fine sand, which has a smaller particle size. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

  • PDF

Determination of tunnel support pressure under the pile tip using upper and lower bounds with a superimposed approach

  • Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.587-605
    • /
    • 2016
  • This study aimed to develop upper and lower bounds to predict the tunnel support pressure under the pile tip during the circular tunnel excavation. Most previous studies on the upper and lower bound methods were carried out for the single ground structures, e.g., retaining wall, foundation, ground anchor and tunnel, in the homogeneous ground conditions, since the pile-soil-tunnel interaction problem is very complicated and sophisticated to solve using those bound methods. Therefore, in the lower bound approach two appropriate stress fields were proposed for single pile and tunnel respectively, and then they were superimposed. In addition, based on the superimposition several failure mechanisms were proposed for the upper bound solution. Finally, these upper bound mechanisms were examined by shear strain data from the laboratory model test and numerical analysis using finite element method.

Analysis of Plume Impingement Effect of Lunar Lander (지상시험 모델용 달착륙선 플룸 해석을 통한 추력기간의 간섭 효과 분석)

  • Choi, Ji-Yong;Lee, Jae-Won;Kim, Su-Kyum;Han, Cho-Young;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.254-257
    • /
    • 2011
  • Two types of thrusters(Descent Control Thruster (DCT) for reducing landing speed and Attitude Control Thruster (ACT) for attitude control) are mounted on the propulsion system of Ground test model lunar lander. In this paper, plume impingement effect and ground effect between DCT Modules are analyzed using numerical method when the impact occurred close to the ground.

  • PDF

Fault Location Algorithm with Ground Capacitance Compensation for Long Parallel Transmission Line (장거리 병렬 송전선로용 대지 정전용량 보상에 의한 고장점 표정 알고리즘)

  • Park, Chul-Won;Kim, Sam-Ryong;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • This paper deals with an improved fault location algorithm with compensation ground capacitance through distributed parameter for a long parallel T/L. For the purpose of fault locating algorithm non-influenced by source impedance and fault resistance, the loop method was used in the system modeling analysis. This algorithm uses a positive and negative sequence of the fault current for high accuracy of fault locating calculation. Power system model of 160km and 300km long parallel T/L was simulated using EMTP software. To evaluate of the proposed algorithm, we used the several different cases 64 sampled data per cycle. The test results show that the proposed algorithm was minimized the error factor and speed of fault location estimation.

A Study on the Dynamic Behavior of Concrete Dam by Shaking Table Tests (진동대 시험을 이용한 콘크리트 댐의 동적거동 특성 연구)

  • Hwang, Seong-chun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.806-812
    • /
    • 2005
  • This paper adresses the shaking table tests with 1/100 scaled model followed similitude law for OOdam main designing section to understand nonlinear behavior characteristics of concrete dam body by ground motion. As earthquake wave, Hachinohe and El Centre waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For maximum ground acceleration range $(0.3\~0.9 g)$, the results showed linear behavior regardless of maximum 9round acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3 cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8 g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8 g), it showed that the dam is stable for supporting upper stream Part of water tank of dam.

Surface Potential Distribution according to Grounding Electrode Shapes (접지전극 형상에 따른 대지표면전위분포)

  • Baek, Young-Hwan;Lee, Bok-Hee;Li, Feng;Yang, Soon-Man;Lee, Kyu-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1360-1361
    • /
    • 2008
  • This paper presents the surface potential rise distribution near grounding electrodes produced by ground fault currents. The small-scale model with the foundation pedestal in hemispherical tank was used to simulate the ground fault condition of the electrical installations for street lamps. When entering the fault current through the test ground electrode, surface potential rise, potential gradient, touch and step voltages for different grounding electrode shapes were measured, and the results obtained were discussed.

  • PDF

Utilization of Recycled Aggregates and Crushed Stone as Horizontal Drains in Soft Ground (수평 배수재로서 순환골재와 쇄석의 활용 방안)

  • Lee, Dal-Won;Lim, Jin-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.111-123
    • /
    • 2010
  • In this study, laboratory model test on utilization of recycled aggregates and crushed stone as horizontal drains to use alternative material of sand in soft ground is practiced. The coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~5.1 times and 2.0~3.3 times greater than sand, respectively. The horizontal coefficient of permeability in case of installing the horizontal perforated drain pipe showed largely 1.9~6.8 times more than the case of not installing. The drainage distance showed 1.7~1.8 times greater than sand. When a degree of consolidation is 90 %, there is no delay of consolidation in SCP and PVD improvement sections. Therefore, it is proven that the field applicability is excellent. Also, the suitable quality management criterion is presented to make use of a horizontal drains in soft ground on the basis of analysis of the physical and environmental characteristics.