• Title/Summary/Keyword: ground model test

Search Result 1,134, Processing Time 0.027 seconds

Optimal mixing proportion of bottom-ash-based controlled low strength material for high fillability

  • Youngsu Lee;Taeyeon Kim;Bongjik Lee;Seongwon Hong
    • Geomechanics and Engineering
    • /
    • v.38 no.6
    • /
    • pp.541-551
    • /
    • 2024
  • Bottom ash classifies as a hazardous industrial-waste material that adversely affects human health. This study proposes its mixing with controlled low strength materials (CLSM) as a probable recycling approach. To this end, experiments have been performed to investigate the applicability of bottom-ash-based CLSM that comprises eco-friendly soil binders, water, fly ash, and a combination of bottom ash and weathered granite soil. The physical and chemical properties of the weathered granite soil, bottom ash, fly ash, and soil binders are analyzed via laboratory tests, including X-ray diffraction and scanning electron microscopy. To determine an appropriate CLSM mixing proportion, the flowability test is first performed on three mixture types having three replacement ratios of fly ash each. Subsequently, compressive-strength tests are performed. Based on the results of these tests, four mixtures are selected for the freeze-and-thaw test to determine the appropriate mixing proportion. Finally, the ground model and soil-contamination tests are performed to examine the field applicability of the mixture. This study confirms that bottom-ash-based CLSM causes negligible soil contamination, and it satisfies the prescribed performance requirements and contamination standards in Korea.

A Study on the Arrangement Design of Shield-TBM Cutter Bit (Shield-TBM 커터비트배치 설계에 관한 연구)

  • Kim, Sang-Hwan;Kim, Ji-Tae;Lim, Chae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.67-76
    • /
    • 2012
  • This study is a research about cutter bits arrangement of shield-TBM and carried out a scale model test and numerical analysis according to a space of cutter bits. A cutter head pressures and an advance time are measured to be followed by the space of cutter bits with an advance speed through the scale model test. We conducted the numerical analysis to verify the result of the scale model test, and to compare with the scale model test. There are three cases of space : unification 1.0D and 1.5D. In case TBM is excavated and space is 1.0D, the advance speed is much faster than the other cases, and pressure of face of ground deformation and cutter head is maintained stably. If additional researches about bits arrangement of cutter head of sand ground based on the result of this research are performed, substantial results may be obtained.

Deformation Analysis of Shallow Tunnel Using Tunnel Model Test and Computational Analysis (모형시험과 수치해석을 이용한 저토피 터널의 변형거동에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in shallow tunnel design and construction in urban area. For deformation analysis of shallow tunnel due to excavation it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigaties quantitatively the deformation behavior of shallow tunneling by model tunnel test and strain softening analysis Incorporating the reduction of shear stiffness and strength parameters. The comparison of model tunnel test result and numerical simulation using strain softening analysis showed good agreement in crown settlement, normalized subsidence settlement and developing shear bands above tunnel shoulder. In this study, it is blown that the strain softening modeling is applicable to the nonlinear deformation analysis of shallow tunnel.

A boundary line between shear strain formations associated with tunnelling adjacent to an existing piled foundation (기존 파일기초에 근접한 터널굴착으로 인한 전단변형률 형성에서의 경계선)

  • Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.283-293
    • /
    • 2008
  • A study of interactive ground behaviour due to tunnelling adjacent to existing piles has not been recognized well for the most geotechnical engineers so far. Because this is a very sophisticated boundary condition problem. In this study, therefore, the author has conducted both the laboratory model test and finite element analysis (FEA) to figure out such a complicated ground behaviour related to shear strain formations. Based on the model testing and FEA results, a boundary line which divides into two distinctive shear strain formations in relation to the locations of end-bearing pile tips was proposed. The author believes that the proposed boundary line may be helpful for planning the appropriate tunnel positions for avoiding damage of buildings which supported by piled-foundations in urban areas.

  • PDF

A Comparative Study on the Effect of Promoting Consolidation between SCP and GCP (SCP와 GCP의 압밀촉진효과에 관한 비교 고찰)

  • You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.41-46
    • /
    • 2009
  • In this paper, a series of model tests were performed in laboratory to evaluate promoting consolidation of compaction pile methods for soft ground improvement. For the model tests, composite soil samples that have 10% replacement area ratio were prepared by using sand, gravel, and sandy gravel for the materials of compaction piles. After loading to each composite soil sample, the excess pore pressure dissipation and settlement were investigated. In addition, the behavior of clay mixed with each compaction pile was also monitored at the end of consolidation to evaluate clogging phenomenon. As a test result, the effects for decreasing settlement and promoting consolidation by GCP were prominent, and the mixed clay was not monitored in all of the three compaction piles.

  • PDF

Model Scramjet Engine Design for Ground Test (지상시험용 모델 스크램제트 엔진의 설계)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-13
    • /
    • 2007
  • Scramjet engine is one of the most promising propulsion systems for future transport. For the ground test with T4 shock tunnel, model scramjet engine is designed. Design flight Mach number is 7.6 and flight altitude is 30km. Engine intake is designed by Levenberg-Marquardt optimization method and Korkegi relation. Furthermore, cowl cut out region is installed by the rule of Kantrowitz limit. Inside the combustor, cavity type flame holder is installed. Cavity is designed by Rayleigh line relation and PSR model. Numerical analysis is performed for the design confirm.

Stability Evaluation Along Interface Loss of a Foundation and the Ground (기초와 지반의 접촉면 손실에 따른 지지력 안정성 평가)

  • Kim, Sang-Hwan;Ji, Tal-Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.178-185
    • /
    • 2010
  • This paper presents the evaluation of foundation stability according to decrease of the foundation contact area on the ground. In order to carry out this research, the experimental and numerical studies are performed. In the experimental study, the carefully controled laboratory model tests are carried out with different foundation size and types. The model test results are analyzed and interpreted by analytical and numerical calculation in order to verify both results obtained from experimental and numerical studies. It is clearly found from the results that the foundation stability is considerably reduced when the foundation contact area ratio is less than 75%. This research may be very useful to develop the economical foundation type.

Applicability of Mini-Cone Penetration Test Used in a Soil Box

  • Sugeun Jeong;Minseo Moon;Daehyeon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2023
  • In this study, we conducted verification of key influencing factors during cone penetration testing using the developed Mini Cone Penetration Tester (Mini-CPT), and compared the experimental results with empirical formulas to validate the equipment. The Mini-CPT was designed to measure cone penetration resistance through a Strain Gauge, and the resistance values were calibrated using a Load Cell. Moreover, the influencing factors were verified using a model ground constituted in a soil box. The primary influencing factors examined were the boundary effect of the soil box, the distance between cone penetration points, and the cone penetration speed. For the verification of these factors, the experiment was conducted with the model ground having a relative density of 63.76% in the soil box. It was observed that the sidewall effect was considerably significant, and the cone penetration resistance measured at subsequent penetration points was higher due to the influence between penetration points. However, within the speed range considered, the effect of penetration speed was almost negligible. The measured cone penetration resistance was compared with predicted values obtained from literature research, and the results were found to be similar. It is anticipated that using the developed Mini-CPT for constructing model grounds in the laboratory will lead to more accurate geotechnical property data.

Strength Characteristics of Improved Dredged Clay for Urgent Recovery of Ground Subsidence (함몰지반 긴급복구를 위한 개량준설점토의 강도 특성)

  • Oh, Sewook;Baek, Seungju;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.31-38
    • /
    • 2019
  • Recently, there has been an increasing number of ground subsidence (sink-hole) in the downtown areas, and in such a case, it is important to minimize accidents and passages through prompt recovery. With respect to the present recovery method for ground subsidence, the methods of applying the back filling after excavating the ground subsidence or using the grouting injected materials to restore the ground are mostly used, but there has been few studies on materials used for recovering the ground subsidence. Therefore, in order to clarify the characteristics of back filling materials used in the ground subsidence, this study uses the environment-friendly hardening agent to improve the dredged clay, and then, the mixture ratio of hardening agent and mixture ratio of decomposed granite soil is changed to cure for 3, 7, 14 and 28 days to analyze the intensity characteristics of the unconfined compression, and it was compared with the unconfined compression intensity for the previously used cement, a hardening agent. In order to evaluate the characteristics of intensity on the back filling materials, the C.B.R test was carried out, and for the review on whether the back filling materials influence on corrosion of water and sewer pipes and others, the soil non-resistance test was carried out. As a result of the test, for the case of the recovery work of the ground subsidence that requires urgency, it is considered as prudent if the hardening agents of 12% are integrated to cure for 3 days or longer, and for not having the influence on the corrosion of the gas tube or water pipes, it is proposed to mix for 30% or more of the decomposed granite soil. Door model test were conducted To confirm the bearing capacity characteristics of the solidified layer.

Development and Performance Test of the Kick Motor Igniter (킥모터 점화기 개발 및 성능 시험)

  • Koh, Hyeon-Seok;Kil, Gyoung-Sub;Kim, Byung-Hun;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.190-200
    • /
    • 2007
  • A pyrogen type igniter was designed to satisfy the requirements of KSLV-I Kick Motor system. To insure the reliability of the igniter before the production of the flight model, we have been performed the structure, environmental, combustion tests. The hydraulic test was carried out to confirm the strength of the components of the igniter. The shock and vibration tests were considered to check whether the igniter operates normally under the severe environmental condition. The combustion tests were also performed to understand the ignition characteristics with the variation of initial condition. Finally, we confirmed that the igniter could provide the acceptable energy to ignite the propellant of kick motor at the ground test.

  • PDF