• Title/Summary/Keyword: ground mode

Search Result 645, Processing Time 0.034 seconds

Simplified Analysis of Rectangular Liquid Storage Tanks Considering Fluid-Structure Interaction (유체-구조물 상호작용을 고려한 직사각형 액체저장탱크의 단순해석법)

  • Lee, Jin Ho;Cho, Jeong-Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.203-209
    • /
    • 2022
  • A simplified method for earthquake response analysis of a rectangular liquid storage tank is proposed with fluid-structure interaction considered. In order to simplify the complex three-dimensional structural behavior of a rectangular liquid storage tank, it is assumed that structural deformation does not occur in the plane parallel to the direction in which the earthquake ground motion is applied but in the plane perpendicular to the direction. The structural deformation is approximated by combining the natural modes of the simple beam and the cantilever beam. The hydrodynamic pressure, the structure's mass and stiffness, and the hydrodynamic pressure's added mass are derived by applying the Rayleigh-Ritz method. The natural frequency, structural deformation, pressure, effective mode mass, and effective mode height of the rectangular liquid storage tank are obtained. The structural displacement, hydrodynamic pressure, base shear, and overturning moment are calculated. The seismic response analysis of an example rectangular liquid storage tank is performed using the proposed simplified approach, and its accuracy is verified by comparing the results with the reference solution by the finite element method. Existing seismic design codes based on the hydrodynamic pressure in rigid liquid storage tanks are observed to produce results with significant errors that cannot be ignored.

A Design of Two Layer Re-entrant Microstrip Directional Coupler Improving Coupling and Isolation (결합도와 격리도를 개선한 이중층 Re-entrant 마이크로스트립 방향성 결합기 설계)

  • 최문호;이진택;천동완;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1052-1059
    • /
    • 2003
  • In this paper, we proposed the directional coupler using two layer microstrip substrate which is improved coupling and isolation. Also, we notified a design method. Modified re-entrant mode coupler is the structure added to the aperture on the ground plane in order to improving the coupling value. And, by adding to slits on the floating conductor, this structure has good performance in isolation, VSWR according to S$\sub$11/, and phase difference. As a result, proposed re-entrant mode microstrip directional coupler has about 1.5 dB more higher coupling and 20 dB more higher isolation than conventional coupler. And because this coupler has good performance in phase difference, it can be used multi-section coupler.

Parameter extraction and signal transient of IC interconnects on silicon substrate (실리콘기판 효과를 고려한 전송선 파라미터 추출 및 신호 천이)

  • 유한종;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.871-874
    • /
    • 1998
  • A new transmission line parameter extraction method of iC interconnects on silicon substrate is presented. To extract the acurate parameters, the silicon substrate effects were taken into account. Since the electromagnetic fields under the silicon substrate are propagated with slow wave mode, effective dielectric constant and different ground plane with the multi-layer dielectric structures were employed for inductance and capacitance matrix determination. Then accurate signal transients simulation were performed with HSPICE by using the parameters. It was shown that the simulation resutls has an excellent agreement with TDR/TDT measurements.

  • PDF

A study on the structural behaviors of air-pressurized vertical arch (공기로 지지되는 수직 아치의 구조거동에 관한 연구)

  • 김재열;이장복;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.274-279
    • /
    • 1998
  • The structural behaviors of a arch composed of flexible membrane are investigated. The membrane is considered as thin shell with internal pressure during FEM analysis by using ABAQUS. In the paper, a wind load and uniformly distributed vertical load are considered. As a vertical load, snow loads including applied over all and half of the structure are introduced. The ends of arch are fixed to the ground. Load-Deflections relationship, buckling mode of the structure are presented.

  • PDF

Failure Modes in Piled Embankments (말뚝으로 지지된 성토지반의 파괴형태)

  • 홍원표;윤중만;서문성
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.207-220
    • /
    • 1999
  • Model tests were performed to investigate the failure modes in embankments on soft ground supported by piles with cap beams. In the model tests, Jumunjin standard sand was placed on simulated cap beams and soft ground. The cap beams are placed perpendicular to the longitudinal axis of the embankment. The colored sand and the Jmniin standard sand were placed one after the other above cap beams and soft ground to make lateral stripes with 3mm thickness in the embarkment. The colored sand was prepared by coating the Jumunjin sand with black lead powder. The photographs illustrate the two characteristic modes of failure in embarkments. One is the soil arching failure and the other is the punching shear failure. The failure mode depends on the height of embankment and the space between cap beams. That is, if the embankment is high enough compared with the space between cap beams, it will fail in arching failure. On the other hand if the embarkment is relatively low or the space between piles is too wide, it will fail in punching shear failure. The soil arching develops in embarkment as a semicylindrical arch with a thickness equal to the width of the cap beam. And the soil wedge developed above the cap beams remains intact during both arching and punching failures. The boundary of punching shear failure of the displaced soil mass can be defined on the basis of observation of the photographs.

  • PDF

SIMULTANEOUS OBSERVATIONS OF PI 2 PULSATIONS ON THE SATELLITE AND GROUND-BASED MEASUREMENTS (위성 및 지상자력계에서의 PI 2 파동 동시 관측)

  • 이성환;이동훈;김관혁
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.275-285
    • /
    • 1997
  • We have investigated Pi 2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, Pi 2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI) were located near the magnetic meridian of the 210 array. The local time of measurements covers from morning(LT=8.47hr) to afternoon(LT=20.3hr) and the bandwidth of peak frequency is found relatively small. The signals of the electric field are highly coherent with ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60) shows no signature of Pi 2 pulsations over the same time interval and the correlation with any of the ground-based stations is found to be very weak, even through both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi 2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996). The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  • PDF

Performance analysis for Ground Position Accuracy Test of MLAT (MLAT 지상 위치정확도 시험에 대한 성능 분석)

  • Koo, Bon-soo;Jang, Jae-won;Kim, Woo-riul;Kim, Tae-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.325-331
    • /
    • 2017
  • As a GPS stability problem arises, MLAT system is spotlighted as an alternative technology of ADS-B. MLAT system has a high position accuracy as much as ADS-B. Also, MLAT receives the mode A,C,S, and 1090ES(ADS-B) signals from the mounted aircraft transponder. MLAT receives signals from several receiver units and calculates aircraft positions. MLAT has ADS-B level positioning accurarcy using GPS and can calculate the position information with objects independently. According to global environment changes, Local area multiltilateration(LAM) surveillance system is under development for moving vehicles and aircraft detection in airport. These are still under testing in Tae-an Airfield. In the paper, we analyzed the performance by comparing the calculated position data from MLAT to RTK. In order to confirm the position accuracy of MLAT and the deviation of position data between fixed target and moving target on the ground during the field test in Tae-an Airfield.

Throughput Analysis of SBC for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Chang Y.J.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.593-596
    • /
    • 2005
  • The MSC is a remote sensing instrument with very high performance that is to be installed on KOMPSAT2 satellite. The MSC consists of EOS (Electro-Optic Subsystem), PMU (Payload Management Unit) and PDTS (Payload Data Transmission Subsystem). PMU controls and monitors all the other payload units by sending commands and collecting telemetry. PMU is in charge of interfacing between payload system and satellite bus system. PMU gets commands from ground-station via OBC (On-Board Computer) that is a main controller of the satellite bus system and sends telemetry to the ground-station via OBC. There is a processor module, called SBC (Single Board Computer) in the PMU. The SBC is a main controller of the MSC system. The main roles of the SBC are payload mission management, command validation and execution, telemetry collection and monitoring, ancillary data handling, event reporting, power control of payload sub-units and communication with these units. Intel's 80486DX2 processor has been used for the SBC. Due to the fact that the SBC plays important roles for imaging mission execution and handles a lot of control data that is required for payload operation, it is required to make analysis of the CPU load when it is in maximum operation mode. In this paper, the analysis and measurement results of the SBC throughput in the maximum operation mode.

  • PDF

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

Shaking table test of wooden building models for structural identification

  • Altunisik, Ahmet C.
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • In this paper, it is aimed to present a comparative study about the structural behavior of tall buildings consisting of different type of materials such as concrete, steel or timber using finite element analyses and experimental measurements on shaking table. For this purpose, two 1/60 scaled 28 and 30-stories wooden building models with $40{\times}40cm$ and $35{\times}35cm$ ground/floor area and 1.45 m-1.55 m total height are built in laboratory condition. Considering the frequency range, mode shapes, maximum displacements and relative story drifts for structural models as well as acceleration, displacement and weight limits for shaking table, to obtain the typical building response as soon as possible, balsa is selected as a material property, and additional masses are bonded to some floors. Finite element models of the building models are constituted in SAP2000 program. According to the main purposes of earthquake resistant design, three different earthquake records are used to simulate the weak, medium and strong ground motions. The displacement and acceleration time-histories are obtained for all earthquake records at the top of building models. To validate the numerical results, shaking table tests are performed. The selected earthquake records are applied to first mode (lateral) direction, and the responses are recorded by sensitive accelerometers. Comparisons between the numerical and experimental results show that shaking table tests are enough to identify the structural response of wooden buildings. Considering 20%, 10% and 5% damping rations, differences are obtained within the range 4.03-26.16%, 3.91-65.51% and 6.31-66.49% for acceleration, velocity and displacements in Model-1, respectively. Also, these differences are obtained as 0.49-31.15%, 6.03-6.66% and 16.97-66.41% for Model-2, respectively. It is thought that these differences are caused by anisotropic structural characteristic of the material due to changes in directions parallel and perpendicular to fibers, and should be minimized using the model updating procedure.