• Title/Summary/Keyword: ground granulated blast-furnace slag (GGBS)

Search Result 81, Processing Time 0.022 seconds

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete

  • Ganesan, N.;Sahana, R.;Indira, P.V.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.75-86
    • /
    • 2017
  • An experimental work was carried out to study the effect of hybrid fiber on the tension stiffening and cracking characteristics of geopolymer concrete (GPC). A total of 24 concentrically reinforced concrete specimens were cast and tested under uniaxial tension. The grade of concrete considered was M40. The variables mainly consist of the volume fraction of crimped steel fibers (0.5 and 1.0%) and basalt fibers (0.1, 0.2 and 0.3%). The load deformation response was recorded using LVDT's. At all the stages of loading after the first cracking, crack width and crack spacing were measured. The addition of fibers in hybrid form significantly improved the tension stiffening effect. In this study, the combination of 0.5% steel fiber and 0.2% basalt fiber gave a better comparison than the other combinations.

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang;Jiang, Daibo;Hateo, Gou
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.877-894
    • /
    • 2022
  • Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.

Corrosion of Steel in Blended Concretes Containing OPC, PFA, GGBS and SF

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn Chu
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.171-176
    • /
    • 2009
  • The chloride threshold level (CTL) in mixed concrete containing, ordinary Portland cement (OPC), pulverized fuel ash (PFA) ground granulated blast furnace slag (GGBS), and silica fume (SF) is important for study on corrosion of reinforced concrete structures. The CTL is defined as a critical content of chloride at the steel depth of the steel which causes the breakdown of the passive film. The criterion of the CTL represented by total chloride content has been used due to convenience and practicality. In order to demonstrate a relationship between the CTL by total chloride content and the CTL by free chloride content, corrosion test and chloride binding capacity test were carried out. In corrosion test, Mortar specimens were cast using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.0, 0.2, 0.4, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder. All specimens were cured 28 days, and then the corrosion rate was measured by the Tafel's extrapolation method. In chloride binding capacity, paste specimens were casting using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binders. At 28days, solution mixed with the powder of ground specimens was used to measure binding capacity. All specimens of both experiments were wrapped in polythene film to avoid leaching out of chloride and hydroxyl ions. As a result, the CTL by total chloride content ranged from 0.36-1.44% by weight of binders and the CTL by free chloride content ranged from 0.14-0.96%. Accordingly, the difference was ranging, from 0.22 to 0.48% by weight of binder. The order of difference for binder is OPC > 10% SF > 30% PFA > 60% GGBS.

Multi-response optimization of FA/GGBS-based geopolymer concrete containing waste rubber fiber using Taguchi-Grey Relational Analysis

  • Arif Yilmazoglu;Salih T. Yildirim;Muhammed Genc
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.213-230
    • /
    • 2024
  • The use of waste tires and industrial wastes such as fly ash (FA) and ground granulated blast furnace slag (GGBS) in concrete is an important issue in terms of sustainability. In this study, the effect of parameters affecting the physical, mechanical and microstructural properties of FA/GGBS-based geopolymer concretes with waste rubber fiber was investigated. For this purpose, the effects of rubber fiber percentage (0.6%, 0.9%, 1.2%), binder (75FA25GGBS, 50FA50GGBS, 25FA75GGBS) and curing temperature (75 ℃, 90 ℃ and 105 ℃) were investigated. The Taguchi-Grey Relational Analysis (TGRA) method was used to obtain optimum parameter levels of rubber fiber geopolymer concrete (RFGC). The slump, fresh and hardened density, compressive strength, flexural strength, static and dynamic modulus of elasticity, ultrasonic pulse velocity (UPV) tests and scanning electron microscopy (SEM) analysis were performed on the produced concretes. The analysis of variance (ANOVA) method was used to statistically determine the effects of the parameters on the experimental results. A confirmation test was performed to test the accuracy of the optimum values found by the TGRA method. With the increase of GGBS percentage, the compressive strength of RFGC increased up to 196%. The increase in rubber fiber percentage and curing temperature adversely affected the mechanical properties of RFGC. As a result of TGRA, the optimum value was found to be A1B3C1. ANOVA results showed that the most effective parameter on the experimental results was the binder with 99% contribution percentage. It is understood from the SEM images that the optimum concrete had a denser microstructure and less capillary cracks and voids. For this study, the use of the TGRA method in multiple optimization has proven to provide very useful and reliable results. In cases where many factors are effective on its strength and durability, such as geopolymer concrete, using the TGRA method allows for finding the optimum value of the parameters by saving both time and cost.

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar (혼합된 나트륨계열 활성화제에 의한 고로슬래그 기반 모르타르의 강도발현 특성)

  • Kim, Geon-Woo;Kim, Byeong-Jo;Yang, Keun-Hyeok;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Strength model for blasted furnace slag mortar blended with sodium was investigated in this study. The main parameters of AAS (alkali activated slag) mortar were dosage of alkali activator, water to binder ratio (W/B), and aggregate to binder ratio (A/B). For evaluating the property related to the dosage of alkali activator, sodium carbonate ($Na_2CO_3$) of 4~8% was added to 4% dosage of sodium hydroxide (NaOH). W/B and A/B was varied 0.45~0.60 and 2.05~2.85, respectively. An alkali quality coefficient combining the amounts of main compositions of source materials and sodium oxide ($Na_2O$) in sodium hydroxide and sodium carbonate is proposed to assess the compressive strength of alkali activated mortars. Test results clearly showed that the compressive strength development of alkali-activated mortars were significantly dependent on the proposed alkali quality coefficient. Compressive strength development of AAS mortars were also estimated using the formula specified in the previous study, which was calibrated using the collected database. Predictions from the simplified equations showed good agreements with the test results.

Practical Application of GGBS-Based Alkali-Activated Binder to Secondary Products of Concrete (고로슬래그 기반 알카리 활성 결합재의 콘크리트 2차 제품 적용성 평가)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.37-44
    • /
    • 2010
  • This study examined the practical application of ground granulated blast-furnace slag (GGBS) based alkali-activated (AA) binders for the development of cementless environmental-friendly secondary products of concrete, such as brick, shore protection blocks and interlocking blocks. The addition amount and type of alkaline ion to activate GGBS varied according to the diverse qualities of the secondary products of concrete required in Korean industrial standards (KS) and other specifications. Test results showed that the secondary products of concrete using GGBS-based AA binders surpassed the demanded capacities of KS and other specifications. In addition, shore protection block had a pH value close to neutral, enabling an advantageous environment for marine life. Therefore, the GGBS-based AA binders can be effectively applied to develop eco-friendly secondary products of concrete with reduced $CO_2$.

Synthesis and Mechanical Properties of Alkali-Activated Slag Concretes (무시멘트 알칼리 활성 고로슬래그 콘크리트의 배합에 따른 재료 역학적 특성)

  • Song, Jin-Kyu;Lee, Kang-Seok;Han, Sun-Ae;Kim, Young-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1005-1008
    • /
    • 2008
  • The purpose of this study is to estimate basic mechanical properties of alkali-activated concretes based on GGBS(Ground Granulated Blast Furnace Slag). In this study, various mix ratios of alkali activated concretes based on sodium silicate and GGBS were set to evaluate concrete's compressive strengths and strains on the basis of results of existing alkali-activated cements and preliminary concrete tests, which were already performed by authors [Ref. 1]. Compressive strengths of concretes of ages 1, 3, 7, 28, 56 and 91 days were tested and investigated, respectively, and at early ages (< 7days) alkali-activated slag concrete (AASC) showed a high strength development, compared to that of Ordinary Portland Cement (OPC). A compressive strengths of AASC at age-3days range between 18 and 24 MPa, while those of OPC range 12 and 15 MPa. The stress-strain curve after maximum stress, on the other hand, is approximately reached at a compressive strain between 0.002 and 0.0025, which mechanical property is very similar to that of OPC.

  • PDF

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.