DOI QR코드

DOI QR Code

Compressive strength estimation of eco-friendly geopolymer concrete: Application of hybrid machine learning techniques

  • Xiang, Yang (School of Civil Engineering, Chongqing Vocational Institute of Engineering) ;
  • Jiang, Daibo (Logistics Base, Chongqing Technology and Business Institute) ;
  • Hateo, Gou (Building Department of Shandong University)
  • Received : 2022.10.19
  • Accepted : 2022.12.12
  • Published : 2022.12.25

Abstract

Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues associated with the production of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete to help reduce CO2 emissions in the construction industry. The compressive strength (fc) of GPC is predicted using artificial intelligence approaches in the present study when ground granulated blast-furnace slag (GGBS) is substituted with natural zeolite (NZ), silica fume (SF), and varying NaOH concentrations. For this purpose, two machine learning methods multi-layer perceptron (MLP) and radial basis function (RBF) were considered and hybridized with arithmetic optimization algorithm (AOA), and grey wolf optimization algorithm (GWO). According to the results, all methods performed very well in predicting the fc of GPC. The proposed AOA - MLP might be identified as the outperformed framework, although other methodologies (AOA - RBF, GWO - RBF, and GWO - MLP) were also reliable in the fc of GPC forecasting process.

Keywords

Acknowledgement

Fund project : Chongqing Municipal Education Commission Project (KJQN202004004, KJQN201904004).

References

  1. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M. and Gandomi, A.H. (2021), "The arithmetic optimization algorithm", Comput. Meth. Appl. Mech. Eng., 376, 113609. https://doi.org/10.1016/j.cma.2020.113609.
  2. Aghapour, A.H., Yazdani, M., Jolai, F. and Mojtahedi, M. (2019), "Capacity planning and reconfiguration for disaster-resilient health infrastructure", J. Build. Eng., 26, 100853. https://doi.org/10.1016/j.jobe.2019.100853.
  3. Aghayari Hir, M., Zaheri, M. and Rahimzadeh, N. (2022), "Prediction of rural travel demand by spatial regression and artificial neural network methods (Tabriz County)", J. Transport. Res., 1, https://doi.org/0.22034/TRI.2022.312204.2970.
  4. Ahmadi, B. and Shekarchi, M. (2010), "Use of natural zeolite as a supplementary cementitious material", Cement Concrete Compos., 32(2), 134-141. https://doi.org/10.1016/j.cemconcomp.2009.10.006.
  5. Ahmed, H.U., Mohammed, A.A. and Mohammed, A. (2022), "Soft computing models to predict the compressive strength of GGBS/FA-geopolymer concrete", PloS One, 17(5), e0265846. https://doi.org/10.1371/journal.pone.0265846.
  6. Aneja, S., Sharma, A., Gupta, R. and Yoo, D.Y. (2021), "Bayesian regularized artificial neural network model to predict strength characteristics of fly-ash and bottom-ash based geopolymer concrete", Materials, 14(7), 1729. 10.3390/ma14071729.
  7. Armaghani, D.J., Mirzaei, F., Shariati, M., Trung, N.T., Shariati, M. and Trnavac, D. (2020), "Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber", Geomech. Eng., 20(3), 191-205. https://doi.org/10.12989/gae.2020.20.3.191.
  8. Ashrafian, A., Amiri, M.J.T., Rezaie-Balf, M., Ozbakkaloglu, T., and Lotfi-Omran, O. (2018), "Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods", Construct. Build. Mater., 190, 479-494. https://doi.org/10.1016/j.conbuildmat.2018.09.047.
  9. Asteris, P.G., Lemonis, M.E., Nguyen, T.A., Van Le, H., Pham, B. T. and Structures, C. (2021), "Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes", Steel Compos. Struct., 39(4), 471-491. https://doi.org/10.12989/scs.2021.39.4.471.
  10. AzariJafari, H., Amiri, M.J.T., Ashrafian, A., Rasekh, H., Barforooshi, M.J. and Berenjian, J. (2019), "Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature", J. Cleaner Product., 223, 575-586. https://doi.org/10.1016/j.jclepro.2019.03.054.
  11. Babagolzadeh, M., Shrestha, A., Abbasi, B., Zhang, Y., Woodhead, A. and Zhang, A. (2020), "Sustainable cold supply chain management under demand uncertainty and carbon tax regulation", Transport. Res. Part D: Transport. Environ., 80, 102245. https://doi.org/10.1016/j.trd.2020.102245.
  12. Basheer, I.A, and Hajmeer, M. (2000), "Artificial neural networks: fundamentals, computing, design, and application", J. Microbio. Meth., 43(1), 3-31. https://doi.org/10.1016/S0167-7012(00)00201-3.
  13. Benemaran, R.S. and Esmaeili-Falak, M. (2020), "Optimization of cost and mechanical properties of concrete with admixtures using MARS and PSO", Comput.Concrete, 26(4), 309-316. https://doi.org/10.12989/cac.2020.26.4.309.
  14. Bengar, H.A., Shahmansouri, A.A., Sabet, N.A.Z., Kabirifar, K. and Tam, V.W.Y. (2020), "Impact of elevated temperatures on the structural performance of recycled rubber concrete: Experimental and mathematical modeling", Construct. Build. Mater., 255, 119374. https://doi.org/10.1016/j.conbuildmat.2020.119374.
  15. Blash, A.M.A. and Lakshmi, T.V.S.V. (2016), "Properties of geopolymer concrete produced by silica fume and groundgranulated blast-furnace slag", Int. J. Sci. Res, 5(10), 319-323.
  16. Bounds, D.G., Lloyd, P.J., Mathew, B.G. and Waddell, G. (1988), "A multilayer perceptron network for the diagnosis of low back pain", In ICNN, 2, 481-489. https://doi.org/10.1109/ICNN.1988.23963.
  17. Broomhead, D.S. and Lowe, D. (1988), "Radial basis functions, multi-variable functional interpolation and adaptive networks", Royal Signals and Radar Establishment Malvern (United Kingdom).
  18. BS 1881-116 (1983), Testing Concrete. Method for Determination of Compressive Strength of Concrete Cubes, BSI, London.
  19. Buhmann, M.D. (2003), Radial Basis Functions: Theory and Implementations, 12, Cambridge University Press.
  20. Celikten, S., Saridemir, M. and Deneme, I.O. (2019), "Mechanical and microstructural properties of alkali-activated slag and slag+ slag+ fly ash mortars exposed to high temperature", Construct. Build. Mater., 217, 50-61. https://doi.org/10.1016/j.conbuildmat.2019.05.055.
  21. Collins, F. and Sanjayan, J.G. (1999), "Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder", Cement Concrete Res., 29(3), 459-462. https://doi.org/10.1016/S0008-8846(98)00237-3.
  22. Degirmenci, F.N. (2018), "Utilization of natural and waste pozzolans as an alternative resource of geopolymer mortar", Int. J. Civil Eng., 16(2), 179-188. https://doi.org/10.1007/s40999-016-0115-1.
  23. Degirmenci, F.N. (2017), "Effect of sodium silicate to sodium hydroxide ratios on durability of geopolymer mortars containing natural and artificial pozzolans", https://doi.org/10.13168/cs.2017.0033.
  24. Divvala, S. (2021), "Early strength properties of geopolymer concrete composites: an experimental study", Mater. Today: Proceedings, 47, 3770-3777. https://doi.org/10.1016/j.matpr.2021.03.002
  25. Dutta, D., Thokchom, S., Ghosh, P. and Ghosh, S. (2010), "Effect of silica fume additions on porosity of fly ash geopolymers", J. Eng. Appl. Sci, 5(10), 74-79.
  26. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S.J. (2007), "Geopolymer technology: the current state of the art", J. Mater. Sci., 42(9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
  27. Erfanimanesh, A. and Sharbatdar, M.K. (2020), "Mechanical and microstructural characteristics of geopolymer paste, mortar, and concrete containing local zeolite and slag activated by sodium carbonate", J. Build. Eng., 32, 101781. https://doi.org/10.1016/j.jobe.2020.101781.
  28. Esmaeili-Falak, M. and Hajialilue-Bonab, M. (2012), "Numerical studying the effects of gradient degree on slope stability analysis using limit equilibrium and finite element methods", Int J Acad Res, 4(4), 216-22. https://doi.org/10.7813/2075-4124.2012/4-4/A.30.
  29. Esmaeili-Falak, M., Katebi, H. and Javadi, A. (2018), "Experimental study of the mechanical behavior of frozen soilsA case study of tabriz subway", Periodica Polytechnica Civil Eng., 62(1), 117-125 https://doi.org/10.3311/PPci.10960.
  30. Esmaeili-Falak, M., Katebi, H., Vadiati, M. and Adamowski, J. (2019), "Predicting triaxial compressive strength and Young's modulus of frozen sand using artificial intelligence methods", J. Cold Regions Eng., 33(3), 04019007. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000188.
  31. Esmaeili Falak, M. and Sarkhani Benemaran, R. (2022), "Investigating the stress-strain behavior of frozen clay using triaxial test", J. Struct. Construct. Eng., https://doi.org/10.22065/JSCE.2022.332406.2747.
  32. Faris, H., Aljarah, I., Al-Betar, M.A., and Mirjalili, S. (2018), "Grey wolf optimizer: a review of recent variants and applications", Neural Comput. Appl., 30(2), 413-435. https://doi.org/10.1007/s00521-017-3272-5.
  33. Farrar, D.E. and Glauber, R.R. (1967), "Multicollinearity in regression analysis: the problem revisited", Rev. Economic Statistics, 92-107. https://doi.org/10.2307/1937887.
  34. Fathollahi-Fard, A.M., Govindan, K., Hajiaghaei-Keshteli, M. and Ahmadi, A. (2019), "A green home health care supply chain: New modified simulated annealing algorithms", J. Cleaner Product., 240, 118200. https://doi.org/10.1016/j.jclepro.2019.118200.
  35. Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M. and TavakkoliMoghaddam, R. (2018), "A bi-objective green home health care routing problem", J. Cleaner Product., 200, 423-443. https://doi.org/10.1016/j.jclepro.2018.07.258.
  36. Ge, D.M., Zhao, L.C. and Esmaeili-Falak, M. (2022), "Estimation of rapid chloride permeability of SCC using hyperparameters optimized random forest models", J. Sustain. Cement-Based Mater., 1-19. https://doi.org/10.1080/21650373.2022.2093291.
  37. Ghasemi, M., Rasekh, H., Berenjian, J. and AzariJafari, H. (2019), "Dealing with workability loss challenge in SCC mixtures incorporating natural pozzolans: A study of natural zeolite and pumice", Construct. Build. Mater., 222, 424-436. https://doi.org/10.1016/j.conbuildmat.2019.06.174.
  38. Gholhaki, M., Hajforoush, M. and Kazemi, M. (2018), "An investigation on the fresh and hardened properties of selfcompacting concrete incorporating magnetic water with various pozzolanic materials", Construct. Build. Mater., 158, 173-180. https://doi.org/10.1016/j.conbuildmat.2017.09.135.
  39. Gordan, B., Koopialipoor, M., Clementking, A., Tootoonchi, H., and Mohamad, E.T. (2019), "Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques", Eng. Comput., 35(3), 945-954. https://doi.org/10.1007/s00366-018-0642-2.
  40. Gupta, A. (2021), "Investigation of the strength of ground granulated blast furnace slag based geopolymer composite with silica fume", Mater. Today: Proceedings, 44, 23-28. https://doi.org/10.1016/j.matpr.2020.06.010.
  41. Gupta, P., Gupta, N., Saxena, K.K. and Goyal, S. (2021), "Multilayer perceptron modelling of geopolymer composite incorporating fly ash and GGBS for prediction of compressive strength", Adv. Mater. Processing Technol., 1-15. https://doi.org/10.1080/2374068X.2021.1946751.
  42. Hajforoush, M., Madandoust, R. and Kazemi, M. (2019), "Effects of simultaneous utilization of natural zeolite and magnetic water on engineering properties of self-compacting concrete", Asian J. Civil Eng., 20(2), 289-300. https://doi.org/10.1007/s42107-018-00106-w.
  43. Hasanipanah, M., Armaghani, D.J., Amnieh, H.B., Koopialipoor, M. and Arab, H. (2018), "A risk-based technique to analyze flyrock results through rock engineering system", Geotech. Geol. Eng., 36(4), 2247-2260. https://doi.org/10.1007/s10706-018-0459-1.
  44. Hurlimann, A.C., Warren-Myers, G. and Browne, G.R. (2019), "Is the Australian construction industry prepared for climate change?", Build. Environ., 153, 128-137. https://doi.org/10.1016/j.buildenv.2019.02.008.
  45. Karthik, S. and Mohan, K.S.R. (2021), "A taguchi approach for optimizing design mixture of geopolymer concrete incorporating fly ash, ground granulated blast furnace slag and silica fume", Crystals, 11(11), 1279. https://doi.org/10.3390/cryst11111279.
  46. Khale, D. and Chaudhary, R. (2007), "Mechanism of geopolymerization and factors influencing its development: A review", J. Mater. Sci., 42(3), 729-746. https://doi.org/10.1007/s10853-006-0401-4.
  47. Khan, M.A., Zafar, A., Farooq, F., Javed, M.F., Alyousef, R., Alabduljabbar, H. and Khan, M.I. (2021), "Geopolymer concrete compressive strength via artificial neural network, adaptive neuro fuzzy interface system, and gene expression programming with K-fold cross validation", Front. Mater., 8, 621163. https://doi.org/10.3389/fmats.2021.621163.
  48. Kisi, O. (2008), "The potential of different ANN techniques in evapotranspiration modelling", Hydrol. Processes Int. J., 22(14), 2449-2460. https://doi.org/10.1002/hyp.6837.
  49. Kisi, O. and Kerem Cigizoglu, H. (2007), "Comparison of different ANN techniques in river flow prediction", Civil Eng. Environ. Syst., 24(3), 211-231. https://doi.org/10.1080/10286600600888565.
  50. Koopialipoor, M., Ghaleini, E.N., Haghighi, M., Kanagarajan, S., Maarefvand, P. and Mohamad, E.T. (2019), "Overbreak prediction and optimization in tunnel using neural network and bee colony techniques", Eng. Comput., 35(4), 1191-1202. https://doi.org/10.1007/s00366-018-0658-7.
  51. Koopialipoor, M., Jahed Armaghani, D., Haghighi, M. and Ghaleini, E.N. (2019), "A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels", Bull. Eng. Geology Environ., 78(2), 981-990. https://doi.org/10.1007/s10064-017-1116-2.
  52. Kumar, Y.N., Kumar, B.D. and Swami, B.L.P. (2020), "Mechanical properties of geopolymer concrete with combined mineral admixtures", Int. J. Eng. Appl. Sci. Technol., 4(11),144-150.
  53. Li, C., Sun, H. and Li, L. (2010), "A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements", Cement Concrete Res., 40(9), 1341-1349. https://doi.org/10.1016/j.cemconres.2010.03.020.
  54. Madenci, E. and Ozkilic, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  55. Mahmoudi, P., Mohammadi, M. and Daneshmand, H. (2019), "Investigating the trend of average changes of annual temperatures in Iran", Int. J. Environ. Sci. Technol., 16(2), 1079- 1092. https://doi.org/10.1007/s13762-018-1664-4.
  56. Meng, Q., Wu, C., Su, Y., Li, J., Liu, J. and Pang, J. (2019), "Experimental and numerical investigation of blast resistant capacity of high performance geopolymer concrete panels", Compos. Part B: Eng., 171, 9-19. https://doi.org/10.1016/j.compositesb.2019.04.010.
  57. Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  58. Muro, C., Escobedo, R., Spector, L. and Coppinger, R.P. (2011), "Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations", Behavioural Processes, 88(3), 192-197. https://doi.org/10.1016/j.beproc.2011.09.006.
  59. Njock, P.G.A., Shen, S.L., Zhou, A. and Modoni, G. (2021), "Artificial neural network optimized by differential evolution for predicting diameters of jet grouted columns", J. Rock Mech. Geotech. Eng., 13(6), 1500-1512. https://doi.org/10.1016/j.jrmge.2021.05.009.
  60. Okoye, F.N., Prakash, S. and Singh, N.B. (2017), "Durability of fly ash based geopolymer concrete in the presence of silica fume", J. Cleaner Product., 149, 1062-1067. https://doi.org/10.1016/j.jclepro.2017.02.176.
  61. Ozaydin, S., Kocer, G. and Hepbasli, A. (2006), "Natural zeolites in energy applications", Energy Sources, Part A, 28(15), 1425- 1431. https://doi.org/10.1080/15567240500400804.
  62. Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A.F., Jamshidi, M. and Ding, Y. (2012), "Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue?", Construct. Build. Mater., 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017.
  63. Padmakar, M., Barhmaiah, B. and Priyanka, M.L. (2021), "Characteristic compressive strength of a geo polymer concrete", Materials Today: Proceedings, 37, 2219-2222. https://doi.org/10.1016/j.matpr.2020.07.656.
  64. Pierini, J.O., Gomez, E.A. and Telesca, L. (2012), "Prediction of water flows in Colorado River, Argentina", Latin Amer. J. Aquatic Res., 40(4), 872-880. https://doi.org/10.3856/vol40-issue4-fulltext-5
  65. Premkumar, R., Hariharan, P. and Rajesh, S. (2022), "Effect of silica fume and recycled concrete aggregate on the mechanical properties of GGBS based geopolymer concrete", Materials Today: Proceedings, 60, 211-215. https://doi.org/10.1016/j.matpr.2021.12.442
  66. Rao, A.K. and Kumar, D.R. (2020), "Comparative study on the behaviour of GPC using silica fume and fly ash with GGBS exposed to elevated temperature and ambient curing conditions", Materials Today: Proceedings, 27, 1833-1837. https://doi.org/10.1016/j.matpr.2020.03.789.
  67. Rao, G.M., Kumar, K.S., Poloju, K.K. and Srinivasu, K. (2020), "An emphasis of geopolymer concrete with single activator and conventional concrete with recycled aggregate and data analyzing using artificial neural network", IOP Conference Series: Materials Science and Engineering, 998(1), 12060. 10.1088/1757-899X/998/1/012060.
  68. Rashad, A.M. (2014), "A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash", Mater. Des., 53, 1005-1025. https://doi.org/10.1016/j.matdes.2013.07.074.
  69. Saini, G. and Vattipalli, U. (2020), "Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica", Case Studies Construct. Mater., 12, e00352. https://doi.org/10.1016/j.cscm.2020.e00352.
  70. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Javadi, A. (2022), "Predicting resilient modulus of flexible pavement foundation using extreme gradient boosting based optimised models", Int. J. Pavement Eng., 1-20. https://doi.org/10.1080/10298436.2022.2095385.
  71. Sarkhani Benemaran, R., Esmaeili-Falak, M. and Katebi, H. (2020), "Physical and numerical modelling of pile-stabilised saturated layered slopes", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1-16. https://doi.org/https://doi.org/10.1680/jgeen.20.00152.
  72. Shahmansouri, A.A., Bengar, H.A. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
  73. Shahmansouri, A.A., Bengar, H.A. and Jahani, E. (2019), "Predicting compressive strength and electrical resistivity of eco-friendly concrete containing natural zeolite via GEP algorithm", Construct. Build. Mater., 229, 116883. https://doi.org/10.1016/j.conbuildmat.2019.116883.
  74. Shahmansouri, A.A., Nematzadeh, M. and Behnood, A. (2021a), "Mechanical properties of GGBFS-based geopolymer concrete incorporating natural zeolite and silica fume with an optimum design using response surface method", J. Build. Eng., 36, 102138. https://doi.org/10.1016/j.jobe.2020.102138.
  75. Shahmansouri, A.A., Yazdani, M., Ghanbari, S., Bengar, H.A., Jafari, A. and Ghatte, H. F. (2021b), "Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite", J. Cleaner Product., 279, 123697. https://doi.org/10.1016/j.jclepro.2020.123697.
  76. Shen, S.L., Elbaz, K., Shaban, W.M. and Zhou, A. (2022a), "Realtime prediction of shield moving trajectory during tunnelling", Acta Geotechnica, 17(4), 1533-1549. https://doi.org/10.1007/s11440-022-01461-4.
  77. Shen, S.L., Zhang, N., Zhou, A. and Yin, Z.Y. (2022b), "Enhancement of neural networks with an alternative activation function tanhLU", Expert Syst. Appl., 199, 117181. https://doi.org/10.1016/j.eswa.2022.117181.
  78. Supraja, V. and Rao, M.K. (2012), "Experimental study on GeoPolymer concrete incorporating GGBS", Int. J. Electronics, Commun. Soft Comput. Sci. Eng. (IJECSCSE), 2(2), 11.
  79. Tekin, I., Gencel, O., Gholampour, A., Oren, O.H., Koksal, F. and Ozbakkaloglu, T. (2020), "Recycling zeolitic tuff and marble waste in the production of eco-friendly geopolymer concretes", J. Cleaner Product., 268, 122298. https://doi.org/10.1016/j.jclepro.2020.122298.
  80. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Construct. Build. Mater., 252, 118997.
  81. Tran, V.L., Jang, Y. and Kim, S.E. (2021), "Improving the axial compression capacity prediction of elliptical CFST columns using a hybrid ANN-IP model", Steel Compos. Struct., 39(3), 319-335. https://doi.org/10.12989/scs.2021.39.3.319.
  82. Yan, T., Shen, S.L., Zhou, A. and Chen, X. (2022), "Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm", J. Rock Mech. Geotech. Eng., https://doi.org/10.1016/j.jrmge.2022.03.002.
  83. Yang, C., Feng, H. and Esmaeili-Falak, M. (2022), "Predicting the compressive strength of modified recycled aggregate concrete", Struct. Concrete. https://doi.org/10.1002/suco.202100681.
  84. Yuan, J., Zhao, M. and Esmaeili-Falak, M. (2022), "A comparative study on predicting the rapid chloride permeability of self-compacting concrete using meta-heuristic algorithm and artificial intelligence techniques", Struct. Concrete, 23(2), 753-774. https://doi.org/10.1002/suco.202100682.
  85. Zaji, A. H. and Bonakdari, H. (2014), "Performance evaluation of two different neural network and particle swarm optimization methods for prediction of discharge capacity of modified triangular side weirs", Flow Measure. Instrument., 40, 149-156. https://doi.org/10.1016/j.flowmeasinst.2014.10.002.
  86. Zandi, Y., Issakhov, A., Roco Videla, A., Wakil, K., Wang, Q., Cao, Y., Selmi, A., Agdas, A. S., Fu, L. and Qian, X. (2021), "A review study of application of artificial intelligence in construction management and composite beams", Steel Compos. Struct., 39(6), https://doi.org/10.12989/scs.2021.39.6.685.
  87. Zhao, Y., Zhong, X. and Foong, L.K. (2021), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., 39(1), 81-93. https://doi.org/10.12989/scs.2021.39.1.081.
  88. Zhu, W., Huang, L., Mao, L. and Esmaeili-Falak, M. (2022), "Predicting the uniaxial compressive strength of oil palm shell lightweight aggregate concrete using artificial intelligence-based algorithms", Struct. Concrete. https://doi.org/10.1002/suco.202100656.