• Title/Summary/Keyword: ground granulated blast furnace slag (GGBS)

Search Result 82, Processing Time 0.022 seconds

Effects of Micropores on the Freezing-Thawing Resistance of High Volume Slag Concrete (슬래그를 다량 치환한 콘크리트의 동결융해 저항성능에 미치는 미세공극의 영향)

  • Kim, Rae-Hwan;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Song, Gwon-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, effects of micropores on the freezing-thawing resistance of high volume slag concrete are reviewed. Concrete was made with slag which contains the ground granulated blast furnace slag(GGBS) and the pig iron preliminary treatment slag(PS) by replacing 0, 40, 70 %, then compressive strength, freezing-thawing resistance, micropores were reviewed. Also, specified design strength, target air contents were set. Deterioration was induced by using 14-day-age specimen which has low compressive strength for evaluating deterioration by freeze-thawing action. As results of the experiment, despite of specified design strength which has been set similarly and ensured target air contents, the pore size distribution of the concrete showed different results. Micropores in GGBS70 specimen have small amount of water which is likely to freeze because there is small amount of pore volume of 10~100 nm size at 0 cycle which has not been influenced by freezing-thawing. For these reasons, it was confirmed that the freezing-thawing resistance performance of GGBS70 is significantly superior than other specimens because relatively small expansion pressure is generated compared to the other specimens.

Durability Properties of High Volume Blast Furnace Slag Concrete for Application in Nuclear Power Plants (고로슬래그 다량치환 콘크리트의 원전 콘크리트 적용을 위한 내구성능 평가)

  • Seo, Eun-A;Lee, Jang-Hwa;Lee, Ho-Jea;Kim, Do-Gyeum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • This study evaluated the durability of nuclear power plant concrete. The main parameters were the water-to-binder ratio and admixture type. The results revealed that high-volume ground granulated blast-furnace slag(GGBS) concrete had lower initial strength, while the strength reached higher after 28 days. On the other hand, the initial strength of fly ash blended concrete was high, but the long-term strength of the robbery was low. The measured durability of GGBS blended concrete was found to be better than that of the existing concrete mix for use in the construction of nuclear power plants. Especially, the GGBS blended concrete was more durable than the fly ash blended concrete in terms of chloride attack, carbonation resistivity and freezing-thawing durability in low compressive strength. The effects of concrete compressive strength according to gamma rays were minor.

Thermodynamic Modelling of Blast Furnace Slag Blended Cement Composites (고로슬래그가 치환된 시멘트복합체의 열역학적 모델링)

  • Yang, Young-Tak;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.488-495
    • /
    • 2017
  • In this study, we conducted the kinetic hydration modeling of OPC and the final product according to the substitution ratio of GGBS by using the geochemical code, GEMS, in order to calculate the thermodynamic equilibrium. The thermodynamic data was used by GEMS's 3rd party database, Cemdata18, and the cement hydration model, the Parrot & Killoh model was applied to simulate the hydration process. In OPC modeling, ion concentration of pore solution and hydration products by mass and volume were observed according to time. In the GGBS modeling, as the substitution rate increases, the amount of C-S-H, which contributes the long-term strength, increases, but the amount of Portlandite decreases, which leads to carbonation and steel corrosion. Therefore, it is necessary to establish prevention of some deterioration.

Classification of Alkali Activated GGBS Mortar According to the Most Suitable Usage at the Construction Site

  • Thamara, Tofeti Lima;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 2020
  • The usage of OPC-free alkali activated ground granulated blast furnace slag(GGBS) mortar has been widely studied on the previous years, due to its advantages on sustainability, durability and workability. This paper brings a new view, aiming to classify the best application in situ for each mortar, according to the type and activator content. By this practical implication, more efficiency is achieved on the construction site and consequently less waste of materials. In order to compare the different activators, the following experiments were performed: analysis of compressive strength at 28 days, setting time measured by needles penetration resistance, analysis of total pore volume performed by MIP and permeability assessment by RCPT test. In general, activated GGBS had acceptable performance in all cases compared to OPC, and remarkable improved durability. Following the experimental results, it was confirmed that each activator and different concentrations impose distinct outcome performance to the mortar which allows the classification. It was observed that the activator Ca(OH)2 is the most versatile among the others, even though it has limited compressive strength, being suitable for laying mortar, coating/plaster, adhesive and grouting mortar. Samples activated with NaOH, in turn, presented in general the most similar results compared to OPC.

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste (고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성)

  • Choi, Young Cheol;Shin, Dongcheol;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2017
  • Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.

An Investigation on the Strength Properties and Fluidity of Concrete with various Disign Strength according to Ground Granulated Blast Furnace Slag contents (설계강도가 다른 고강도콘크리트의 고로슬래그 대체율에 따른 유동성 및 강도발현특성 검토)

  • Choi, Sun-Mi;Lee, Gun-Su;Lee, Bum-Sik;Kim, Sang-Yun;Bae, Kee-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.837-840
    • /
    • 2008
  • This study was achieved experiment to evaluate effect on fluidity and strength development ratio by slag replacement ratio to $40{\sim}100MPa$ HSC(High Strength Concrete) containing blast furnace slag(GGBS) and fly-ash(FA). Also it was suggested that most suitable replacement ratio of GGBS is effect by strength. The mix plan of concrete used in an experiment was used to the GGBS replacement ratio of 0, 12, 25% as the cement materials, and fly ash was used equally by replacement ratio 15%. According to test results, for use GGBS with fly ash as binder, slump of GGBS replacement ratio 25% is the most superior in 40MPa series, and appeared by thing which slump flow of GGBS 12% is the most superior in 60, 80MPa's series. The other side, was expressed that fluidity is excellent by FA replacement ratio 15% in 100MPa series. In the case of compressive strength 40MPa, it was exposed that the strength revelation is effect in until the GGBS principal parts ratio increases by replacement ratio 25%. Also, it was exposed that GGBS mixing ratio more than replacement ratio 25% is not since fitness in high strength concrete more than 100MPa.

  • PDF

Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete (고로슬래그가 콘크리트의 전 과정 환경영향에 미치는 효과)

  • Yang, Keun-Hyeok;Seo, Eun-A;Jung, Yeon-Back;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • To quantitatively evaluate the influence of ground granulated blast-furnace slag (GGBS) as a supplementary cementitious material on the life-cycle environmental impact of concrete, a comprehensive database including 3395 laboratory mixes and 1263 plant mixes was analyzed. The life-cycle assesment studied for the environmental impact of concrete can be summarized as follows: 1) the system boundary considered was from cradle to pre-construction; 2) Korea life-cycle inventories were primarily used to assess the environmental loads in each phase of materials, transportation and production of concrete; and 3) the environmental loads were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was significantly governed by the unit content of ordinary portland cement (OPC) and decreased with the increase of the replacement level of GGBS. As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and replacement level of GGBS.

Evaluation of protective coatings for geopolymer mortar under aggressive environment

  • Rathinam, Kumutha;Kanagarajan, Vijai;Banu, Sara
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.219-231
    • /
    • 2020
  • The aim of this study is to investigate the durability of fly ash based geopolymer mortar with and without protective coatings in aggressive chemical environments. The source materials for geopolymer are Fly ash and Ground Granulated Blast furnace Slag (GGBS) and they are considered in the combination of 80% & 20% respectively. Two Molarities of NaOH solution were considered such as 8M and 10M. The ratio of binder to sand and Sodium silicate to Sodium hydroxide solution (Na2SiO3/NaOH) are taken as 1:2 and 2 respectively. The alkaline liquid to binder ratio is 0.4. Compressive strength tests were conducted at various ages of the mortar specimens. In order to evaluate the performance of coatings on geopolymer mortar under aggressive chemical environment, the mortar specimens were coated with two different types of coatings such as epoxy and Acrylic. They were then subjected to different chemical environments by immersing them in 10% standard solutions of each ammonium nitrate, sodium chloride and sulphuric acid. Drop in compressive strength as a result of chemical exposure was considered as a measure of chemical attack and the drop in compressive strength was measured after 30 and 60 days of chemical exposure. The compressive strength results following chemical exposure indicated that the specimens containing the acrylic coating proved to be more resistant to chemical attacks. The control specimen without coating showed a much greater degree of deterioration. Therefore, the application of acrylic coating was invariably much more effective in improving the compressive strength as well as the resistance of mortar against chemical attacks. The results also indicated that among all the aggressive attacks, the sulphate environment has the most adverse effect in terms of lowering the strength.

Effect of Ground Granulated Blast Furnace Slag, Pulverized Fuel Ash, Silica Fume on Sulfuric Acid Corrosion Resistance of Cement Matrix

  • Jeon, Joong-Kyu;Moon, Han-Young;Ann, Ki-Yong;Kim, Hong-Sam;Kim, Yang-Bea
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.97-102
    • /
    • 2006
  • In this study, the effect of supplementary materials(GGBS, PFA, SF) on sulfuric acid corrosion resistance was assessed by measuring the compressive strength, corroded depth and weight change at 7, 28, 56, 91, 180 and 250 days of immersion in sulfuric acid solution with the pH of 0.5, 1.0, 2.0 and 3.0. Then, it was found that an increase in the duration of immersion and a decrease in the pH, as expected, resulted in a more severe corrosion irrespective of binders: increased corroded depth and weight change, and lowered the compressive strength. 60% GGBS mortar specimen was the most resistant to acid corrosion in terms of the corroded depth, weight change and compressive strength, due to the latent hydraulic characteristics and lower portion of calcium hydroxide. The order of resistance to acid was 60% GGBS>20% PFA>10% SF>OPC. In a microscopic examination, it was found that acid corrosion of cement matrix produced gypsum, as a result of decomposition of hydration products, which may loose the structure of cement matrix, thereby leading to a remarkable decrease of concrete properties.

Use of waste glass as an aggregate in GGBS based alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Son, Min Jae;Pyeon, Su Jeong;Suh, Dong Kyun;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.21-22
    • /
    • 2021
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in ground granulated blast furnace slag (GGBS) based alkali activated mortar (AAm). Tests were conducted on the AAm to determine the mechanical properties, apparent porosity and the durability based on its resistance to Na2SO4 5% and H2SO4 2% concentrated solutions. The study revealed that increasing GS up to 100 wt%, increased strength and decreased porosity. The lower porosity attained with the incorporation of GS, improved the resistance of mortar to Na2SO4 and thus increasing durability. However, the durability of mortar to H2SO4 solution was negatively impacted with the further reduction of porosity observed with increasing GS above 50 wt.% believed to be caused by the stress induced as a result of expansive reaction products created when the mortar reacted with acid.

  • PDF