• Title/Summary/Keyword: ground deformation

Search Result 795, Processing Time 0.029 seconds

Dynamic response analysis of the caisson-type quay wall using the wavelet transform (웨이브렛 변환을 이용한 케이슨식 안벽의 동적응답해석)

  • Moon, Yong;Kim, Jae-Kwon;Shin, Hyun-Yang;Seok, Jeong-Woo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.74-81
    • /
    • 2003
  • During the 1995 Hyogoken-Nambu earthquake, many caisson-type quay walls in Kobe Port moved several meters towards the seaside due to liquefaction and subsequent ground flow, To investigate the mechanism of quay wall damage, we carried out the numerical simulation using the 2-D effective stress analysis. Input earthquake motions used for the analyses are original Dip wave and the component wave in each compact support of wavelet transformation. The results suggested that the shear failure occurred in the foundation soil underneath the caisson type quay wall due to the deformation of the caisson type quay wall.

  • PDF

Lattice Deformation and Electronic Structure of the $C_{60}{^+}$ Cation

  • 이기학;이한명;전희자;박성수;이왕로;Park, T. Y.;Xin Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.452-457
    • /
    • 1996
  • The effects caused by the ionization on the electronic structure and geometry on C60 are studied by the modified Su-Schriffer-Heeger (SSH) model Hamiltonian. After the ionization of C60, the bond structure of the singly charged C60 cation is deformed from Ih symmetry of the neutral C60 to D5d, C1, and C2, which is dependent upon the change of the electron-phonon coupling strength. The electronic structure of the C60+ cation ground state undergoes Jahn-Teller distortion in the weak electron-phonon coupling region, while self-localized states occur in the intermediate electron-phonon region, but delocalized electronic states appear again in the strong electron-phonon region. In the realistic strength of the electron-phonon coupling in C60, the bond structure of C60+ shows the layer structure of the bond distortion and a polaron-like state is formed.

The Study On The Pre-displacement Before Face Of The Shallow Tunnel In The Weathered Soil (풍화토구간을 통과하는 천층터널의 막장선행변위에 대한 연구)

  • Kang, Suk-Ki;Yoon, Ju-Sang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.947-954
    • /
    • 2008
  • Nowadays many urban subways are frequently constructed under the building and the river by the use of tunneling method. Especially, the majority of the tunnel are constructed even with shallow depth under the ground in the weathered soil. Since the tunnel are generally designed on the basis of the geographic soil investigation, the stability of the tunnel should be checked with the realistic data instrumented during construction. The displacement of the tunnel occurs in front of the end face during the excavation of the tunnel, which is called as pre-displacement. The total displacement can be figured from the exact pre-displacement, which is very difficult to measure without using any device installed in front of the tunnel end face. In this study, the pre-displacement measured from horizontal inclinometer was analyzed to know the co-relation with the total displacement and also, the trend and the characteristics of the tunnel deformation during construction was suggested through the regression analysis of the measured data.

  • PDF

Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete

  • Ganesan, N.;Sahana, R.;Indira, P.V.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.75-86
    • /
    • 2017
  • An experimental work was carried out to study the effect of hybrid fiber on the tension stiffening and cracking characteristics of geopolymer concrete (GPC). A total of 24 concentrically reinforced concrete specimens were cast and tested under uniaxial tension. The grade of concrete considered was M40. The variables mainly consist of the volume fraction of crimped steel fibers (0.5 and 1.0%) and basalt fibers (0.1, 0.2 and 0.3%). The load deformation response was recorded using LVDT's. At all the stages of loading after the first cracking, crack width and crack spacing were measured. The addition of fibers in hybrid form significantly improved the tension stiffening effect. In this study, the combination of 0.5% steel fiber and 0.2% basalt fiber gave a better comparison than the other combinations.

Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method

  • Ghadiri Rad, Mohammad Hossein;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.293-304
    • /
    • 2019
  • In the present paper, the element free Galerkin (EFG) method is developed for geometrically nonlinear analysis of deep beams considering small scale effect. To interpret the behavior of structure at the nano scale, the higher-order gradient elasticity nonlocal theory is taken into account. The radial point interpolation method with high order of continuity is used to construct the shape functions. The nonlinear equation of motion is derived using the principle of the minimization of total potential energy based on total Lagrangian approach. The Newmark method with the small time steps is used to solve the time dependent equations. At each time step, the iterative Newton-Raphson technique is applied to minimize the residential forces caused by the nonlinearity of the equations. The effects of nonlocal parameter and aspect ratio on stiffness and dynamic parameters are discussed by numerical examples. This paper furnishes a ground to develop the EFG method for large deformation analysis of structures considering small scale effects.

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Response of segmented pipelines subject to earthquake effects

  • Yigit, Adil
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.353-362
    • /
    • 2022
  • The seismic failure-prone region in Istanbul has been examined in terms of the segmented pipelines. Although some researchers have suggested that this territory should be left as a green land, many people continue to live in this area. This region is about 9-10 km away from the North Anatolian Fault Line. This fault zone is an active right-lateral strike-slip fault line in Turkey and an earthquake with a magnitude of 7.0-7.5 is expected in the Marmara Sea. Therefore, superstructures and infrastructures are under both land sliding risks and seismic risks in this area. Because there are not any pipeline-fault line intersection points in the region, in this study, it has been focused on the behaviors of the segmented (sewage or stormwater) pipelines subject to earthquake-induced permanent ground deformation and seismic wave propagation. Based on the elastic beam theory some necessary analyses have been carried out and obtained results of this approximation have been examined.

The Measurement of Lateral Displacement of Abutment Using a Inclinometer (경사계를 이용한 교대변위 계측에 관한 연구)

    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.82-90
    • /
    • 2000
  • The abutment of bridge on soft foundation makes lateral movement due to the settlement of back fill and lateral flow. To measure the displacement of such a abutment, there are a lot of indirect method for measurement such as survey of leveling or inclinometer gauge around the abutment. But all of them are not sufficient to confirm the ground behavior and measure the exact lateral behavior of structure. As making the structure and pile cooperatively by measuring the movement of lateral displacement, for measuring the abutment displacement precisely by using the incliinometer. In this work, we try to suggest efficient measuring method of abutment displacement and its application.

  • PDF

Dynamic stability evaluation of nail stabilised vertical cuts in various site classes

  • Amrita;B.R. Jayalekshmi;R. Shivashankar
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.421-437
    • /
    • 2024
  • The soil nailing method entails the utilisation of nails to reinforce and stabilise a zone of soil mass. This is widely used for various applications due to its effective performance under various loading conditions. The seismic response of 6m high vertical soil-nailed cut in various site classes under dynamic excitations has been investigated in this study considering various lengths and inclinations of nails. The influence of frequency content of dynamic excitation on the response of structure has been assessed through finite element analysis using time history data of three different earthquakes. The seismic stability of the nailed cut in retaining soil in various sites under El Centro, Kobe and Trinidad earthquake ground motion is evaluated based on maximum acceleration response, maximum horizontal deformation, earth pressure distribution on the wall and maximum axial force mobilised in nails. The optimum nail inclination is identified as 15° and a minimum nail length ratio of 0.7 is essential for a stable vertical cut under dynamic excitations.

The Characteristic of Strength for a Lime Stone in Donghae Area and Harden Cement Milk of Super Injection Grouting (동해 석회암과 SIG 고결체의 강도특성)

  • Park, Young-Ho;Kim, Nak-Young;Hong, Sa-Myun;Yook, Jeong-Hoon;Kim, Ki-Seog
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.137-145
    • /
    • 2004
  • Limestone zone in korea have been distributed to diagonal line so that it is wide from the Gangwondo to the Jeonlanamdo. The limestone cavity and fractured zone were formed by chemical weathering. Limestone cavity and fractured zone was reinforced with cemented milk(w/c=60%)by high pressure jet grouting by tripple -pipe to establish bridge foundation on the ground condition like limestone cavity. To analyze property of limestone and solid of cement milk(w/c=65%), mixed solid of cement, core NX size in the limestone cavity and fractured zone and compressive strength. Seismic tomograpy exploration was pcrforn1cd to analyze deformation modulus of limestone. The analysis suggests that deformation modulus of limestone has effect on uniaxial compressive strength, seismic velocity, seismic elasticity modulus. Average static elasticity modulus of limestone is $5.08{\times}10^5kgf/cm^2$, cement and coal mixed solid is $0.25{\times}10^5kgf/cm^2$, $0.095{\times}10^5kgf/cm^2$. Average seismic velocity of limestone is 5.240m/sec, cement and coal mixed solid is 2,211.3m/sec, 1,447.5m/sec. Average uniaxial compressive strength of limestone was $1,221.3kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $125.22kgf/cm^2$, $35kgf/cm^2$ each other. Average friction angle of limestone was $49.14^{\circ}$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $38.39^{\circ}, 25.83^{\circ}$ each other. Average cohesion of limestone was $137.7kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $23.5kgf/cm^2$, $15.5kgf/cm^2$ each other. Average deformation modulus of limestone was $2.84{\times}10^5kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $0.4{\times}10^5kgf/cm^2, 0.12{\times}10^5kgf/cm^2$ each other. It was analyzed that the elasticity and uniaxial compressive strength, seismic velocity of solid of cement milk mixed limestone pieces and coal had an highly interrelation regardless of existence of limestones pieces and coal but it had shown that limestones had an lower interrelation. In case of field seismic velocity and deformation of limestone, SIC solid of cement milk mixed with coal and limestone pieces had an highly interrelation.

  • PDF