• Title/Summary/Keyword: ground condition

Search Result 2,221, Processing Time 0.038 seconds

Analysis of Ground Movements due to Tunnel Excavation Considering Ground Conditions, Excavation Characteristics, and Ground Layer Formations (지반조건, 굴착특성 및 지층구성을 고려한 터널굴착 유발 지반변위 거동분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.239-250
    • /
    • 2009
  • Tunnelling-induced settlements and lateral ground movements have been investigated by numerical parametric studies considering ground condition, excavation characteristics, and ground layers. Before the numerical study the existing methods of ground movement estimation have been collected and analysed to have some information of ground movements and to improve them providing a fundamental material for the numerical study. Numerical model simulation has been performed of a physical model test of tunnel excavation in which the ground movements were measured reliably and the results have been used to determine the numerical approach and the appropriate soil constitutive mode. With this procedure done, the results of numerical parametric studies have been put together to analyze and understand tunnelling-induced settlements and lateral ground movements.

Study on Surface Grinding Characteristics of Ni-Zn Ferrite (Ni-Zn 페라이트의 평면 연삭 특성)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.19-24
    • /
    • 1998
  • This paper aims to clarify the effects of grinding conditions on the ground surface and bending strength in surface grinding of various ferrites with diamond wheel. The main conclusions obtained were as follows. The surface roughness becomes better at lower wheel speed in the case of v/V=1$\times$10-3, and the condition of v/V=1$\times$10-4shows the best performance for the finish grinding. When the relative contact temperature becomes lower at a constant value of v/V, the ground surface exhibits lower roughness. The ground surface shows that the fracture process during grinding becomes more brittle at the higher value of v/V. The damage depth which affect the bending strength is below 10$\mu$m in the grinding condition of S=10㎣/mm.s with the diamond tool after dressing & truing, however, the depth increases with increasing removal rate(S). When the strength degradation due to grinding is larger, the removal depth for the recovery of strength requires a larger size.

  • PDF

A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems (지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구)

  • Baek, Sung-Kwon;Jeon, Joong-Kyu;An, Hyung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

Effect of Dual Task Training in Visual Control and Unstable Base on the Gait of Stroke Patient

  • Lee, Sa Gyeom;Kim, Yang Rae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.1
    • /
    • pp.788-794
    • /
    • 2015
  • This study examines changes in walking ability among patients with stroke after applying dual-task training under the condition of visual control and unstable supporting ground; the purpose is to provide reference data for selecting intervention methods that enhance the walking ability of patients with stroke. Among the patients with stroke who received rehabilitation treatment(at Rehabilitation Hospital B in Gyeonggi, South Korea from May 2014 to July 2014), 29 patients were selected as research subjects; all of them understood the purpose and contents of this research and agreed to participate in the experiment. The research subjects were divided into a visual control and unstable supporting ground dual-task(VUDT) group(10 patients), a visual control dual-task(VDT) group(10 patients), and an unstable supporting ground dual-task(UDT) group(9 patients); all of the subjects received 30-minute trainings, three times a week for a total of four weeks. A Timed-Up-and-Go(TUG) test was performed to investigate the change of walking function among the subjects, and a 10m walking test was conducted to measure their walking speed. According to the study results, all three groups showed significant differences after dual-task training; the dual-task training group under the condition of visual control and unstable supporting ground showed the most prominent change. This study confirmed that dual-task training using visual control and unstable supporting ground has a positive impact on the walking ability of patients with stroke. Through the study results, we found that implementing dual-task training under the condition of visual control and unstable supporting ground can more effectively improve the walking ability of patients with stroke, rather than performing visual control dual-task training or unstable supporting ground dual-task training only.

A study of tunnel concrete lining design using the ground-lining interaction model with the interface element (계면요소를 이용한 지반-라이닝 상호작용 모델에 의한 터널 콘크리트 라이닝 연구)

  • Huh, Do-hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.575-586
    • /
    • 2015
  • In NATM tunnel, the Ground-Lining Interaction model(GLI model) had been proposed a one of the numerical analysis as the ground load estimation method of the concrete lining. But this model was not applied with the interface mechanism between the ground and the support member or concrete lining. Therefor in this study, it is implemented as a model for closer than actual states that the interface element applied to the existing GLI model. And the modified GLI formula is proposed with the ground load estimation that is from the numerical results for each ground and rock cover conditions. Based on the numerical results, the ground load acting on concrete lining is reduced to ave. 88~106% in case of IV ground condition and ave. 47~57% in case of weathered soil condition comparing with the existing GLI model. It can be anticipated that the results obtained from this study can be applied to an estimation of the ground load on the concrete lining modeled like as real states, consistent and economical design.

Comparative Study on the Growth Condition of Landscape Woody Plants according to the Ground Structure - Focusing on Manseok Beach Town Complex 2, Incheon - (지반구조에 따른 수목 생육상태 비교 연구 - 인천광역시 만석비치타운 단지를 대상으로 -)

  • Cho, Sung-Ho;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.63-82
    • /
    • 2022
  • The purpose of this study is to compare growth condition of landscape woody plants growing on the different ground structures in apartment complex. I chose Manseok Beach Town Complex 2, in Manseok-dong, Seo-gu, Incheon which has both natural and artificial ground as a subject site. Analysis of three phases of soil showed that artificial ground had average liquid phase of 30.89%, artificial ground mounding 33.88% and natural ground 24.40%. It means that artificial ground has higher water content than natural ground despite having same earthiness. It is believed that artificial ground is not as well drained as natural ground even though it is connected to the natural ground and has a deep soil depth because of mounding. Comparative study between woody plants on natural ground and those on artificial ground demonstrated that trees on natural ground grew 40.4% compared to those on artificial ground(0.875mm more) in terms of diameter growth. Average diameter growth of trees on natural ground was 3.040mm against 2.165mm for those on artificial ground. All 19 tree species which were measured for root diameter growth showed similar or higher growth on natural ground than on artificial ground. When it comes to growth of height, arborvitae showed highest growth on natural ground, followed by Thuja occidentalis, Pinus strobus, Magnolia denudata, Diospyros kaki and Aesculus turbinata. I measured branch growth and rate of leaf adherence of Pinus strobus. Average annual rate of branch growth of woody plants on natural ground was twice as high as those on artificial ground. I could conclude that ground structure influences branch growth of Pinus strobus. Statistics analysis of tree damage demonstrated significant result, meaning that there is a difference in the average damage rate depending on structure of ground. In order to validate growth difference by planting ground, I conducted T-Test of growth of diameter, root diameter, branch and height on woody plants growing on natural and artificial ground. As a result, it is believed that there is a difference in the growth of trees depending on the ground structure. Putting all these results together demonstrates that woody plants on natural ground generally grow better than those on artificial ground, which means ground structure does have an influence on the environment of growth of trees.

Experimental Research on Braking Characteristics of Aircraft ABS Brake System with Ground Conditions (항공기용 ABS 제동시스템의 노면 조건별 제동특성에 관한 시험적 연구)

  • Yi, Mi-Seon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.18-24
    • /
    • 2017
  • Results of the experimental research are described in this thesis, which are about braking characteristics of aircraft ABS brake system with different ground conditions. Dynamo-tests were conducted with the state of the application aircraft condition and with two different ground conditions. The Braking characteristics on each ground condition were drawn from the results of occurrence of skid, braking distance and deceleration. The braking performance of the application aircraft could be anticipated and the efficient range of braking operation could be set with those results.

A Study on the Application of MJM for Ground (MJM 주입공법의 현장적용성에 관한 연구)

  • Chun, Byung-Sik;Choi, Choon-Sik;Roh, Jong-Ryun;Lee, Seung-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.437-442
    • /
    • 2005
  • The high pressure jet grouting method is mainly used in the grouting. But, this method has problems that the scale and strength of improved body is not constant with ground condition. Considering these problems, triple rod MJM that results in the high-strength effect by the technology of the injected ${\phi}7mm$ cement mortar was developed. In this MJM, the unconfined strength is estimated with the various combination ratio and engineering characteristic, strength improvement effect of improved body, was checked through the field test. It is known that the application of MJM was verified with ground and construction condition.

  • PDF

Study on Wake Roll-Up Behavior Behind Wings In Close Proximity to the Ground

  • Han, Cheol-Heui;Cho, Jin-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.76-81
    • /
    • 2002
  • A numerical simulation of wake behavior behind three-dimensional wings in ground effect is done using an indirect boundary element method (Panel Method). An integral equation is obtained by applying Green's 2nd Identity on all surfaces of the flow domain. The AIC is constructed by imposing the no penetration condition on solid surfaces, and the Kutta at the wing's trailing edge. The ground effect is included using an image method. At each time step, a row of wake panels from wings' trailing edge are convected downstream following the force-free condition. The roll-up of wake vortices behind wings in close proximity is simulated.

Walking Algorithm for Real-Time Stability of a Humanoid Robot Using Fuzzy Algorithm Under Uneven Terrain (퍼지 알고리즘을 이용한 불규칙한 지면에서 보행하는 휴머노이드 로봇의 실시간 보행 안정성 구현)

  • Cho, Hyoung-Rae;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.205-207
    • /
    • 2006
  • Since a humanoid robot inherently suffers from instability and always risks tipping itself over, or topping to the ground, it is necessary to ensure high stability and reliability of walk. An unexpected ground condition is one of the principal factors of instability. This paper proposes a walk stabilization method consisting of a Fuzzy algorithm and geometry under uneven terrain. The ground reaction forces that are measured by the FSR sensors on the sole are used to check the ground condition and the robot posture. The effectiveness of proposed method is verified by computer simulations.

  • PDF