• Title/Summary/Keyword: ground building

Search Result 1,653, Processing Time 0.023 seconds

Propagation characteristics of blast-induced vibration to fractured zone (파쇄영역에 따른 발파진동 전파특성)

  • Ahn, Jae-Kwang;Park, Duhee;Park, Ki-Chun;Yoon, Ji Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.959-972
    • /
    • 2017
  • In evaluation of blast-induced vibration, peak particle velocity (PPV) is generally calculated by using attenuation relation curve. Calculated velocity is compared with the value in legal requirements or the standards to determine the stability. Attenuation relation curve varies depending on frequency of test blasting, geological structure of the site and blasting condition, so it is difficult to predict accurately using such an equation. Since PPV is response value from the ground, direct evaluation of the structure is impractical. Because of such a limit, engineers tend to use the commercial numerical analysis program in evaluating the stability of the structure more accurately. However, when simulate the explosion process using existing numerical analysis program, it's never easy to accurately simulate the complex conditions (fracture, crushing, cracks and plastic deformation) around blasting hole. For simulating such a process, the range for modelling will be limited due to the maximum node count and it requires extended calculation time as well. Thus, this study is intended to simulate the elastic energy after fractured zone only, instead of simulating the complex conditions of the rock that results from the blast, and the analysis of response characteristics of the velocity depending on shape and size of the fractured zone was conducted. As a result, difference in velocity and attenuation character were calculated depending on fractured zone around the blast source appeared. Propagation of vibration tended to spread spherically as it is distanced farther from the blast source.

Application technique on thrust jacking pressure of shield TBM in the sharp curved tunnel alignment by model tests (축소모형실험을 통한 급곡선 터널에서의 Shield TBM 추진 압력 적용 기술에 대한 연구)

  • Kang, Si-on;Kim, Hyeob;Kim, Yong-Min;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.335-353
    • /
    • 2017
  • This paper presents the application technique on thrust jacking pressuring of shield TBM in the sharp curved tunnel alignment by model tests. Recently, the application of shield TBM method as mechanized tunnelling is increasing to prevent the vibration and noise problems, which can be occurred in the NATM in the urban area in Korea. However, it is necessary to plan the sharp curved tunnel alignment in order to avoid the building foundation and underground structures, to develop the shield TBM operation technique in the shape curved tunnel alignment. Therefore, the main operation parameters of shield TBM in the curved tunnel alignment are reviewed and analyzed based on the case study and analytical study. The results show that the operation of shield jacking force system is the most important technique in the shape curved tunnel alignment. The simplified scaled model tests are also carried out in order to examine the ground-shield TBM head behaviour. The earth pressures acting on the head of shield TBM are investigated according to two different shield jacking force systems (uniform and un-uniform pressure) and several articulation angles. The results obtained from the model tests are analysed. These results will be very useful to understand the shield TBM head interaction behaviour due to the shield jacking operation technique in the shape curved tunnel alignment, and to develop the operation technique.

Analysis of Regional Antecedent Wetness Conditions Using Remotely Sensed Soil Moisture and Point Scale Rainfall Data (위성토양수분과 지점강우량을 이용한 지역 선행습윤조건 분석)

  • Sunwoo, Wooyeon;Kim, Daeun;Hwang, Seokhwan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.587-596
    • /
    • 2014
  • Soil moisture is one of the most important interests in hydrological response and the interaction between the land surface and atmosphere. Estimation of Antecedent Wetness Conditions (AWC) which is soil moisture condition prior to a rainfall in the basin should be considered for rainfall-runoff prediction. In this study, Soil Wetness Index (SWI), Antecedent Precipitation Index ($API_5$), remotely sensed Soil Moisture ($SM_{rs}$), and 5 days ground Soil Moisture ($SM_{g5}$) were selected to estimate the AWC at four study area in the Korean Peninsula. The remotely sensed soil moisture data were taken from the AMSR-E soil moisture archive. The maximum potential retention ($S_{obs}$) was obtained from direct runoff and rainfall using Soil Conservation Service-Curve Number (SCS-CN) method by rainfall data of 2011 for each study area. Results showed the great correlations between the maximum potential retention and SWI with a mean correlation coefficient which is equal to -0.73. The results of time length representing the time scale of soil moisture showed a gap from region to region. It was due to the differences of soil types and the characteristics of study area. Since the remotely sensed soil moisture has been proved as reasonable hydrological variables to predict a wetness in the basin, it should be continuously monitored.

Assesment of Load and Resistance Factored Design Value for PHC Driven Pile (PHC 항타말뚝의 하중저항계수 산정)

  • Park, Jong-Bae;Park, Yong-Boo;Lee, Bum-Sik;Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.4 no.3
    • /
    • pp.279-286
    • /
    • 2013
  • Driving a prefabricated pile is the efficient construction method with low cost and excellent bearing capacity charateristics. But pile drinving method has often been changed to bored pile method with mechanical boring due to the unexpected problems occurred in the various domestic ground condition with landfill. So, pile driving method has more uncertainty than the Bored Pile method. This paper proposed LRFD design value which is one of limit states design method for the PHC driven pile used as building foundation to guarantee the reliable design with reduced uncertainty. This paper analysed 221 dynamic load test results(E.O.I.D : 93, Resrike : 128) and the different methods of estimating bearing design(Meyerhof method & SPT-CPT conversion method), and proposed LRFD value for each design reliability Index 2.33 and 3.0 for PHC driven pile. LRFD value of PHC driven pile represents 0.43~0.55 for Meyerhof method and 0.40~0.49 for SPT-CPT conversion method according to the deign reliability index.

A Study on the Function Overlap and Irrational Hierarchy System of Logistics Complexes of Inland Base: Focusing on the Case of the Integrated Freight Terminal in the Yeongnam Area (내륙 거점 물류단지 기능중첩 및 연계체계 불합리성에 관한 연구: 영남권 복합물류 터미널을 사례로)

  • JUNG, Jin Uk;PARK, Woonho;JOH, Chang-Hyeon;PARK, Dongjoo
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.4
    • /
    • pp.304-317
    • /
    • 2016
  • The advancement in technology including transportation and information communication has accelerated the flow of supplies, and the importance of the national logistics policy has increased following the expansion of the regional range of logistics to a national range. The rapid growth of the domestic logistics market results in the deficit of logistics facilities, inefficient operation of logistics facilities, and a complicated distribution structure. It has precipitated a plan aimed at efficiency improvement by building base logistics facilities, but this market is now undergoing difficulties due to low performance. Many studies on the revitalization of base logistics facilities have been conducted, but a causal analysis focusing on the function overlap of private logistics businesses has been absent. Therefore, this study has analyzed the function overlap of logistics facilities and the irrationality of the system, which resulted from the lost function of Inland Freight bases in the Yeongnam region. By suggesting the cause of disuse of base logistics complexes from the function overlap in the ground transportation of domestic freight, the study can provide the policy implication for the national logistics infrastructure.

Web Structure of the Wasp Spider, Argiope bruennichi, Depending on Micro-Habitat Characteristics (미소서식지 특성에 따른 긴호랑거미 (Argiope bruennichi)의 웹 구조 분석)

  • Kim, Kil-Won;Kim, Duk-Rae;Jin, Woo-Young
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Web building of the spider is an investment behavior for prey foraging with genetic constraint. Individual's decision-making on the web construction depends on diverse environmental variables. This study investigated web structure of the wasp spider, Argiope bruennichi, to compare individual's behaviors in dry field and in wet field. We measured 35 web structures in dry field (Chunma-San, Incheon) showing relatively low humidity (46.4%) and luxuriant herbage, and 13 web structures in the wet rice field (73.9%; Taean-Gun, Chungnam). Comparing to the wet field the individuals in the dry field invested significantly more silk: $32.5{\pm}12.8$ number of silk spirals used in the dry field vs. $16.9{\pm}5.4$ in the wet field. The web area of the dry field was greater than that of the wet field: $976{\pm}643cm^2$ vs. $532{\pm}254cm^2$. The web height, distance between the ground and the center of the web, appeared higher in the dry field than in the wet field: $71.4{\pm}39.6cm$ vs. $49.6{\pm}31.2cm$. Also the web constructed in the dry field showed longer stabilimentum than the web of the wet field: $18.8{\pm}3.4cm$ vs. $3.9{\pm}3.2cm$. The perpendicular inclination and the inclination to East-West of the web showed no difference between the two fields. This study suggests that adult females of A. bruennichi could modulate its construction behavior depending on the micro-habitat factors.

An Efficient Filtering Technique of GPS Traffic Data using Historical Data (이력 자료를 활용한 GPS 교통정보의 효율적인 필터링 방법)

  • Choi, Jin-Woo;Yang, Young-Kyu
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.55-65
    • /
    • 2008
  • For obtaining telematics traffic information(travel time or speed in an individual link), there are many kinds of devices to collect traffic data. Since the GPS satellite signals have been released to civil society, thank to the development of GPS technology, the GPS has become a very useful instrument for collecting traffic data. GPS can reduce the cost of installation and maintenance in contrast with existing traffic detectors which must be stationed on the ground. But. there are Problems when GPS data is applied to the existing filtering techniques used for analyzing the data collected by other detectors. This paper proposes a method to provide users with correct traffic information through filtering abnormal data caused by the unusual driving in collected data based on GPS. We have developed an algorithm that can be applied to real-time GPS data and create more reliable traffic information, by building patterns of past data and filtering abnormal data through selection of filtering areas using Quartile values. in order to verify the proposed algorithm, we experimented with actual traffic data that include probe cars equipped with a built-in GPS receiver which ran through Gangnam Street in Seoul. As a result of these experiments, it is shown that link travel speed data obtained from this algorithm is more accurate than those obtained by existing systems.

  • PDF

The Effect of Composite Ratio and Wall Thickness on the Shear Behavior of Composite Basement Wall (합성율과 벽체두께가 합성지하벽의 전단거동에 미치는 영향)

  • Seo, Soo-Yeon;Kim, Seong-Soo;Yoon, Yong-Dae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • When doing underground excavation works for the purpose of constructing large underground structures for a building in the limited space in downtown area, the stability of the adjacent ground must be top priority, and to accomplish this, it is essential to review the retaining wall construction carefully. H-Pile, which has been mainly used as a stress-carrying material in temporary earth-retaining structures, is most likely to be abandoned after completion of the works for the basement exterior wall in relation to contiguous bored piles, so it will result in a waste of material. To improve this situation, Basement Composite Wall where H-Pile and basement wall are compounded, has been developed. This wall is being used most frequently in many local construction sites. In this study, five specimens are made in order to evaluate the shear resistance of the basement composite wall and tested. Test parameter is the composition ratio and wall thickness according to shear connectors. Test result shows that the shear strength is improved when the composite ratio is increased but the magnitude is not much. A formula, which considers the contribution of concrete, web of H-pile as well as flange' effect in calculation of shear strength of composite basement wall, is suggested and used to calculation of the strength of specimens. It is found that there is a good co-relation between test result and the calculated one by the formula.

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

Affected Model of Indoor Radon Concentrations Based on Lifestyle, Greenery Ratio, and Radon Levels in Groundwater (생활 습관, 주거지 주변 녹지 비율 및 지하수 내 라돈 농도 따른 실내 라돈 농도 영향 모델)

  • Lee, Hyun Young;Park, Ji Hyun;Lee, Cheol-Min;Kang, Dae Ryong
    • Journal of health informatics and statistics
    • /
    • v.42 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • Objectives: Radon and its progeny pose environmental risks as a carcinogen, especially to the lungs. Investigating factors affecting indoor radon concentrations and models thereof are needed to prevent exposure to radon and to reduce indoor radon concentrations. The purpose of this study was to identify factors affecting indoor radon concentration and to construct a comprehensive model thereof. Methods: Questionnaires were administered to obtain data on residential environments, including building materials and life style. Decision tree and structural equation modeling were applied to predict residences at risk for higher radon concentrations and to develop the comprehensive model. Results: Greenery ratio, impermeable layer ratio, residence at ground level, daily ventilation, long-term heating, crack around the measuring device, and bedroom were significantly shown to be predictive factors of higher indoor radon concentrations. Daily ventilation reduced the probability of homes having indoor radon concentrations ${\geq}200Bq/m^3$ by 11.6%. Meanwhile, a greenery ratio ${\geq}65%$ without daily ventilation increased this probability by 15.3% compared to daily ventilation. The constructed model indicated greenery ratio and ventilation rate directly affecting indoor radon concentrations. Conclusions: Our model highlights the combined influences of geographical properties, groundwater, and lifestyle factors of an individual resident on indoor radon concentrations in Korea.