• Title/Summary/Keyword: ground building

Search Result 1,653, Processing Time 0.029 seconds

Influence of Predominant Periods of Seismic Waves on a High-rise Building in SSI Dynamic Analyses with the Complete System Model (연속체 모델에 기초한 SSI 동적해석 시 지진파 탁월주기가 초고층 건물에 미치는 영향)

  • You, Kwangho;Kim, Juhyong;Kim, Seungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.5-14
    • /
    • 2019
  • Recently in Korea, researches on seismic analyses for high-rise buildings in a large city have been increasing because earthquakes have occurred. However, the ground conditions are not included in most of seismic researches and analyses on a high-rise building. Also the influence of the predominant period of a seismic wave is not considered in reality. Therefore, in this study, the influence of the predominant period of a seismic wave on the dynamic behavior of high-rise buildings was analyzed based on the complete system model which can consider the grounds. For this purpose, 2D dynamic analyses based on a linear time history analysis were performed using MIDAS GTS NX, a finite-element based program. Dynamic behavior was analyzed in terms of horizontal displacements, drift ratios, bending stresses, and building weak zones. As a result, in overall, the dynamic response of a high-rise building become bigger as the predominant period of a seismic wave become longer. It was also found that the predominant period had a greater influence than other parameters, ground conditions and peak ground acceleration.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

Study on Improvement of Response Spectrum Analysis of Pile-supported Structure: Focusing on the Natural Periods and Input Ground Acceleration (잔교식 구조물의 응답스펙트럼 해석법 개선사항 도출 연구: 고유주기 및 입력지반가속도를 중점으로)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, Jong-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.17-34
    • /
    • 2020
  • In response spectrum analysis of pile-supported structure, an amplified seismic wave should be used as the input ground acceleration through the site-response analysis. However, each design standard uses different input ground acceleration criteria, which leads to confusion in determining the appropriate input ground acceleration. In this study, the ground accelerations were calculated through dynamic centrifuge model test, and the response spectrum analysis was performed using the calculated ground acceleration. Then, the moments derived from the test and analysis were compared, and a method for determining the appropriate input ground acceleration in response spectrum analysis was presented. Comparison of the experimental and simulated results reveals that modeling of the ground using elastic springs allows proper simulation of the natural period of the structure, and the use of a seismic wave that is amplified at the ground surface as the input ground acceleration provided the most accurate results for the response analysis of pile-supported structures in sands.

Seismic Fragility Analysis of Single-Degree-of-Freedom Model Based on Input Earthquake Ground Motions in Strong and Low-to-Moderate Seismic Regions (강진 및 중·약진 지역의 입력 지진파에 따른 단자유도 모델의 지진취약도 분석)

  • Sangki Park;Jeong-Rae Cho;Chang-Beck Cho;Dong-Chan Kim;Jinhyuk Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.371-380
    • /
    • 2023
  • To calculate seismic fragility, it is important to select input earthquake ground motions that can properly express the characteristics of the target site. This study analyzed the seismic fragility of a single-degree-of-freedom (SDOF) model based on input earthquake ground motions in strong and low-to-moderate seismic regions. As a first step, a total of four sets of input earthquake ground motions were selected,: two sets measured near or far from overseas strong earthquake records and two sets exhibiting the characteristics of low-to-moderate earthquake regions in South Korea. A nonlinear SDOF model for three natural periods was applied to the target structure, and incremental dynamic analysis was used for fragility analysis. In addition, four damage states were defined, and seismic fragility results for each natural period of the nonlinear SDOF model for the four aforementioned input earthquake ground motion sets were obtained for each damage state.

Experimental Study on Evaluation of Rotational Resistance of Multi-Span Greenhouse Foundations (연동비닐하우스 기초의 회전저항성능 평가에 관한 실험적 연구)

  • Lee, Hyunjee;Shin, Jiuk;Kim, Minsun;Choi, Kisun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.5-12
    • /
    • 2018
  • The foundation of the multi-span greenhouse structures is designed with small shallow concrete foundation considering mainly the vertical load. However, recently, due to an abnormal climate such as strong wind, horizontal load and up-lift load over design strength are applied to the foundation, causing safety problems of the greenhouse foundation. In order to reasonably evaluate the safety of greenhouse foundations, rotational and pullout stiffness expressed by the ground-foundation interaction should be evaluated, which also affects the safety of the upper structural members. In this study, three representative basic foundation types were selected by classifying greenhouse standards in Korea according to the shape, and the horizontal loading tests and theoretical calculation were performed for each foundation type. As a result of the comparison and analysis of the test and calculation, it was found that rotational resistance of the foundation is different according to the ratio of the contact area between the foundation and ground when the conditions of the foundation - ground contact surface and the mechanical properties of the ground are the same.

A Study of Ground Subsidence Risk Grade Analysis Based on Correlation Between the Underground Utility Structure Density and Recorded Ground Subsidence (지중매설물 밀집도와 이력지반함몰의 상관성 분석을 통한 위험도 등급 분석 기법에 관한 연구)

  • Choi, Changho;Kim, Jin-Young;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.69-77
    • /
    • 2022
  • Several studies have been conducted to analyze the risk of ground subsidence occurring in urban areas. Recently, the correlation between the density of underground utilities (i.e., the quantity of buried utilities in the analysis area) and the recorded ground subsidence has been explored to analyze such risk through. Choi et al. (2021) proposed an algorithm to optimize the correlation between the ground subsidence and normalized linear density of underground pipelines. In this study, the optimization algorithm was modified for analysis based on the risk grade. The analysis results using the modified optimization algorithm were compared with the correlation analysis results between the density of underground utilities and recorded ground subsidence presented by Choi et al. (2021). Compared with Choi et al. (2021), three analysis results showed equal or higher accuracy in the correlation analysis with recorded ground subsidence according to risk grade. In particular, for R100, it was divided into five grades and compared with the ratio of the recorded ground subsidence that occurred in grades 4 or higher. As a result, Choi et al. (2021) showed that 86% of recorded ground subsidence occurred in grades 4 or higher, whereas this study showed 93%. It was confirmed that the accuracy of the modified optimization algorithm was improved. The modified optimization algorithm can be applied to develop a ground subsidence risk map for each grade in an urban area, which can be used as basic data for decision-making for underground utility maintenance.

Comparison of Machine Learning Models to Predict the Occurrence of Ground Subsidence According to the Characteristics of Sewer (하수관로 특성에 따른 지반함몰 발생 예측을 위한 기계학습 모델 비교)

  • Lee, Sungyeol;Kim, Jinyoung;Kang, Jaemo;Baek, Wonjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.5-10
    • /
    • 2022
  • Recently, ground subsidence has been continuously occurring in downtown areas, threatening the safety of citizens. Various underground facilities such as water and sewage pipelines and communication pipelines are buried under the road. It is reported that the cause of ground subsidence is the deterioration of various facilities and the reckless development of the underground. In particular, it is known that the biggest cause of ground subsidence is the aging of sewage pipelines. As an existing study related to this, several representative factors of sewage pipelines were selected and a study to predict the risk of ground subsidence through statistical analysis has been conducted. In this study, a data SET was constructed using the characteristics of OO city's sewage pipe characteristics and ground subsidence data, The data set constructed from the characteristics of the sewage pipe of OO city and the location of the ground subsidence was used. The goal of this study was to present a classification model for the occurrence of ground subsidence according to the characteristics of sewage pipes through machine learning. In addition, the importance of each sewage pipe characteristic affecting the ground subsidence was calculated.

A Study on the Safety Measures of Camping Ground Fire (야영장 화재 안전대책에 관한 연구)

  • Choi, Ji-Hun;Choi, Don-Mook
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • The leisure life pattern of people is changing to a familial and enthusiastic way that eventually develops the camping culture. Thus, the number of campers and the size of camping market have been dramatically increased due to significant expansion of camping people. However, many camp grounds and facilities are operating without a proper registration by government rules and regulations. In addition, many of electronic and gas equipment and tools are not used in a safe way and in a safety regulatory boundary. Therefore, campers at the camping ground is situated in a fire and safety hazard. In addition, there is limitation in rules and regulations associated with camping ground safety and fire. This study analyzed the fire and hazard guidelines and rules regulations of developed countries of campground and compared them to the current situation in South Korea. Therefore, this study is to develop a safety and fire hazard guidelines and rules and regulations related to camp ground operation, gas and electronic equipment operation and management. The study will eventually reduce the future fire and safety incidents in a campground in South Korea.

A Case Study on the Effect of Soil Improvement on Anchor Bond Zone (지반개량에 의한 Anchor 정착부 개선효과 사례연구)

  • Kim, Tae-Seob;Song, Sang-Ho;Cho, Kyu-Wan;Lee, Jae-Dong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1008-1013
    • /
    • 2006
  • Ground anchor method is widely used in the large scale deep excavation of urban area to support a retained wall. Excavation using the ground anchor as a supporting system near a building have many difficulties due to the limitation of construction space. This method can not be applied to the site with the insufficient space from the retained wall to the boundary line. In this case, soil improvement at the anchor bond zone can be used to secure the frictional resistance of ground anchor within the boundary. Through this method, the bond length of anchor can be shortened considerably. This paper deals with the case study on the ground excavation adjacent to a building. The object field is Yongsan Park Tower Construction Site. In this site, the enlarged anchor with soil improvement was applied to solve the problem due to the limitation of construction space. According to the results of field test and monitoring, the anchor with soil improvement is very effective to secure the frictional resistance at the anchor bond zone.

  • PDF

Cooling and Heating Performance Under the Actual Operating Condition of a Ground Source Heat Pump System in a School Building (학교 건물에 설치된 지열원 열펌프 시스템의 실사용을 통한 냉난방성능 연구)

  • Kim, Eui-Young;Jeong, Young-Man;Song, Jae-Do;Lee, Jae-Keun;Kim, In-Kyu;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.586-589
    • /
    • 2009
  • This paper presents the performance of a water-to-refrigerant type ground source heat pump (GSHP) system installed in a school building in Korea. For analyzing the performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the input power of the GSHP system. The average cooling coefficient of performance (COP) of the heat pump was found to be 8.5 at 60% partial load condition, while the overall system COP was found to be 5.9. The average heating COP of the heat pump was found to be 6.5 at 45% partial load condition, while the overall system COP was found to be 5.0.

  • PDF