• Title/Summary/Keyword: ground anchors

Search Result 92, Processing Time 0.024 seconds

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Ground Anchor Testing on Temporary Excavations (일반 가설앵커의 문제점과 개선방향)

  • 김성규;김낙경;김정렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.545-552
    • /
    • 2003
  • For temporary excavation support in a congested urban area, the strand of ground anchor should be removed to get permission of the private land to install anchors. But the strand doesn't need to be removed in the outside city area after use. So the anchor body, tension anchor, is fabricated in-situ. The unbonded length of This anchor has several strands, which wrap only one sheath. When the anchor body is carried into job-site or installed in the bore hole, the sheath is torn easily because it is a very week material. So the grout permeate into the torn sheath. Because of that, the load doesn't transfer to the bond length of ground anchors. It may indicate that load is being transferred along the unbonded length and thus within the potential slip surface assumed for overall stability of the anchored system. The load tests were performed on seven low-pressure grouted anchors installed in weathered soil to verify its problems. Four anchors(Type A) have the unbonded length, which consist of five strands and a week sheath and three anchors(Type B) have strands, which is covered by plastic sheath filled with grease, in the unbonded length. Both anchors are compared with load tests results.

  • PDF

Evaluation of Residual Tensile Load of Field Ground Anchors Based on Long-Term Measurement (현장 그라운드 앵커 장기거동 분석을 통한 잔존긴장력 평가)

  • Park, Seong-yeol;Lee, Sangrae;Jung, Jonghong;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.8
    • /
    • pp.35-47
    • /
    • 2020
  • For permanent anchors used for slope reinforcement, bearing capacity and durability should be secured during the period of use. However, according to recent domestic and foreign studies, phenomena such as tension fractures, damage to anchorages, deformation and damage to slope and reduction of residual load over time have been reported along the long-term behavior of the anchors. These problems are expected to increase in the future, which will inevitably lead to problems such as increasing maintenance costs and relevant facility collapse. It is necessary to improve maintenance procedures and methods of ground anchors more practically. In this study, the problems and limitations of domestic maintenance methods were analyzed by conducting a literature study, and the measurement data of load cells installed on the install ground anchors were analyzed to determine the change in the residual load with regard to the elapsed date of the anchors. Based on the results, the effect of the construction conditions of anchors and the soil compositions on the increase and decrease of load were identified.

Measurement of Retaining Tensile Load with the Relative Displacement Detector of Ground Anchors (상대변위측정기를 이용한 지반앵커의 보유인장력 측정)

  • Jeong, Hyeon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.59-69
    • /
    • 2017
  • The tension load of the ground anchor inserted in the ground gradually changes over time. In this regard the change of the initial tension load is primarily decreased by the fixation condition of the fixing head and the mechanical characteristics of the tensile material. The subsequent additional tension load is a time-dependent loss mostly due to the fixing conditions of the bonded length and the surrounding ground properties of the field. In this paper, therefore, a measurement system using a relative displacement detector that can relatively easily measure the change of tension load is discussed. As a result of the review, it was confirmed that the results using the relative displacement detector are similar to those of the real scale model test, and it was also confirmed that similar results were obtained with the result of the pull-out test conducted on the ground anchors fixed to weathered rocks condition. In addition, a pull-out test was conducted on the test anchors whose initial tension load loss was relatively large and through this test pull-out behavior of the tension type ground anchors was verified.

Pullout capacity of small ground anchors: a relevance vector machine approach

  • Samui, Pijush;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.259-262
    • /
    • 2009
  • This paper examines the potential of relevance vector machine (RVM) in prediction of pullout capacity of small ground anchors. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The results are compared with a widely used artificial neural network (ANN) model. Overall, the RVM showed good performance and is proven to be better than ANN model. It also estimates the prediction variance. The plausibility of RVM technique is shown by its superior performance in forecasting pullout capacity of small ground anchors providing exogenous knowledge.

Numerical Study on the Skin Friction Characteristics of Tension Type Ground Anchors in Weathered Soil (풍화토 지반에 적용된 인장형 앵커의 주면마찰응력 분포특성에 대한 수치해석적 연구)

  • Jeong, Heyon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.39-56
    • /
    • 2017
  • Distribution of both axial force and skin friction should be investigated in order to estimate pull-out capacity of ground anchors. Numerical method of computing load-transfer characteristics of the ground anchors, however, has not been specified and studies on this area are not sufficient. This study suggested the numerical method of simulating the characteristics of axial force and skin friction distribution against the tension type ground anchors. Also, debonding behaviors of skin friction and axial force were calculated by the suggested numerical method as a function of load levels. As a result of the review, it is confirmed that the distributions of axial force and skin friction by the suggested numerical method are relatively similar to those of field test results.

Applicability of the Tensile Test Performance Evaluation Baseline for Ground Anchors (지반앵커에 대한 인장시험 성능평가 기준선의 적용성 고찰)

  • Kim, Dae Gun;Park, Tae Kwang;Park, Lee Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.75-84
    • /
    • 2022
  • Currently, tension ground anchors are divided into temporary and permanent based on their purpose and period of use, and their performance evaluations are presented separately. Therefore, applying the current performance evaluation's upper and lower limits to practice seems reasonable. However, because compression ground anchors have been mainly used as permanent, performance evaluation corresponding to permanent is conducted without distinction between temporary and permanent. This evaluation is a strict standard for ground anchors used as temporary, including the removal type. Because of examining the existing performance evaluation for the compression ground anchor, the lower limit can be applied without distinguishing between the temporary and permanent. However, the upper limit should be presented separately for the temporary and permanent. In applying the upper limit, it is necessary to adjust the upper limit of the anchor considering the anchored ground condition (rock or soil), the period of use, and particularly whether the load-displacement curve maintains the elastic state.

Kinematic limit analysis of pullout capacity for plate anchors in sandy slopes

  • Yu, S.B.;Merifield, R.S.;Lyamin, A.V.;Fu, X.D.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.565-579
    • /
    • 2014
  • The pullout capacity of plate anchors has been studied extensively over the past 40 years. However, very few studies have attempted to calculate the pullout capacity of anchors in sandy slopes. In this paper, three upper bound approaches are used to study the effect of a sloping ground surface and friction angle on pullout capacity and failure of plate anchors. This includes the use of; simple upper bound mechanisms; the block set mechanism approach; and finite element upper bound limit analysis. The aim of this research is to better understand the various failure mechanisms and to develop a simple methodology for estimating the pullout capacity of anchors in sandy slopes.

An analysis of the Behaviour of Uplift-Resisting Ground Anchors from Pull-out Tests (현장시험을 통한 부력앵커의 거동분석)

  • Lee, Cheolju;Jun, Sanghyun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 2007
  • Engineering behaviour of uplift-resisting ground anchors constructed in weathered rocks has been investigated by carrying out a series of full scale pull-out tests. The anchor was to resist uplift forces (buoyancy) associated with high groundwater table acting on the basement of a rail way station. The study has included the ultimate pull-out capacity of the anchors and shear stress transfer mechanism at the anchor-ground interface. The pull-out tests were conducted by changing bonded lengths of the anchor (2~7 m) and diameter of drilled borehole (108~165 mm) to investigate their effects on the behaviour of the anchor. The measured results showed that the ultimate capacity of the anchors was increased with an increase in the bonded length, diameter of drilled borehole as expected. The ultimate capacity of the anchors deduced from the pull-out tests ranged from 392 to 1,569 kN, depending on the above-mentioned factors. This corresponds to the interface shear strength of about 227~505 kPa. Interface shear stresses deduced from the pull-out test showed that the larger the pull-out force, the larger the mobilisation of the interface shear strength. The failure mode of the anchors heavily depended on the bonded lengths of the anchors. When the bonded length was short (2~3 m), a cone-type failure was observed, whereas when the bonded length increased (5~7 m), failure developed at the grout-ground interface.

  • PDF

Long-term monitoring of ground anchor tensile forces by FBG sensors embedded tendon

  • Sung, Hyun-Jong;Do, Tan Manh;Kim, Jae-Min;Kim, Young-Sang
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, there has been significant interest in structural health monitoring for civil engineering applications. In this research, a specially designed tendon, proposed by embedding FBG sensors into the center king cable of a 7-wire strand tendon, was applied for long-term health monitoring of tensile forces on a ground anchor. To make temperature independent sensors, the effective temperature compensation of FBG sensors must be considered. The temperature sensitivity coefficient ${\beta}^{\prime}$ of the FBG sensors embedded tendon was successfully determined to be $2.0{\times}10^{-5}^{\circ}C^{-1}$ through calibrated tests in both a model rock body and a laboratory heat chamber. Furthermore, the obtained result for ${\beta}^{\prime}$ was formally verified through the ground temperature measurement test, expectedly. As a result, the ground temperature measured by a thermometer showed good agreement compared to that measured by the proposed FBG sensor, which was calibrated considering to the temperature sensitivity coefficient ${\beta}^{\prime}$. Finally, four prototype ground anchors including two tension ground anchors and two compression ground anchors made by replacing a tendon with the proposed smart tendon were installed into an actual slope at the Yeosu site. Tensile forces, after temperature compensation was taken into account using the verified temperature sensitivity coefficient ${\beta}^{\prime}$ and ground temperature obtained from the Korean Meteorological Administration (KMA) have been monitored for over one year, and the results were very consistent to those measured from the load cell, interestingly.