• Title/Summary/Keyword: grinding process

Search Result 827, Processing Time 0.027 seconds

Simulation and Improvement of Grinding Processes for Linear Motion Guide Blocks (선형가이드용 블록 연삭 공정 시뮬레이션 및 개선에 대한 연구)

  • 조명동;김현수;홍성욱;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1018-1021
    • /
    • 1997
  • This paper presents a result of simulation and improvement of grinding process for linear motion guide blocks. A simulation software, which is based on cylindrical grinding process. is used to predict the grinding wheel wear during the grinding process. To validate the simulation, the simulation result is compared with the experimental one. Simulation study is extended to obtain an optimal grinding condition for minimizing the grinding wheel wear. The optimal condition is validated through an experiment.

  • PDF

A Study on the Cylindrical Grinding Technology by Electrolytic In-Process Dressing(ELID) Method (전해인프로세스드레싱법에 의한 초정밀 원통 연삭기술 연구)

  • Je, Tae-Jin;Lee, Eung-Suk
    • 연구논문집
    • /
    • s.28
    • /
    • pp.59-71
    • /
    • 1998
  • The ELID(electrolytic in-process dressing) grinding method is a new precision grinding technique with the special electrolytic in-process dressing by metal bonded grinding wheel, fluid, and power supply. It is possible to make a efficient precision machining of hard and brittle materials such as ceramics, hard metals, and quenched steels by using this method, In this study, a new efficient precision grinding method with ELID was attempted for application to the machining and finishing processes of cylindrical structural components. And, we try to develop the cylindrical grinding technique for mirror surface of ceramics, tungsten carbide and SCM steel, and for the high efficiency grinding of machined parts, for example, ball screw shaft. Electrical characteristics of three different wheel grit sizes of #325, #2000 and #4000 were investigated experimentally. ELID grinding method is proved to be useful for mirror surface generation and efficient machining.

  • PDF

The Surface Characteristics of Workpiece by Wear of Wheel (숫돌 마멸량에 따른 연삭가공물의 표면특성)

  • Ha, M.K.;Kwak, J.S.;Kwak, T.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • The surface roughness is one of important parameters to obtain the high quality of products in grinding process. In precision components, it's level must be limited to a certain range. This study evaluated experimentally grinding characteristics of workpieces in the surface grinding process. The grinding forces were obtained to compare with the grindability of workpieces such as STD11, STS304 and STB2. The surface roughnesses on various workpieces were measured according to increasing the feed and the depth of cut. In addition, the wear amount of wheels according to the number of grinding were obtained. Also the grinding wheel and the ground surface were observed with a microscopic instrument.

  • PDF

Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report) (신경망 회로를 이용한 연삭가공의 트러블 검지(II))

  • Kwak, J.S.;Kim, G.H.;Ha, M.K.;Song, J.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF

A Basic Study on the Monitoring of Grinding Burn by Grinding Power Signatures (연삭동력에 의한 Grinding Burn 검지를 위한 기초적 연구)

  • 이재경
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.18-26
    • /
    • 1997
  • Grinding burn formed on the ground surface is related to the maximum temperature of workpiece surface and wheel tempertaure in the grinding process. The thermal characteristics of workpiece and grinding conditions on the surface tempertaure of the oxidation growing layer after get out of contact with the grinding wheel. The assumption used in grinding power signatures leads to the local temperature distribution between grinding wheel and workpiece, i.e., a single curve determines temperatures anywhere within the grinding wheel at anytime. This information is useful in the study of the grinding burn penetration into the wheel and thus provides an presentation of grinding trouble monitoring for the burning. On the basis of grinding power signatures in the wheel, thermally optimum grinding conditions are defined and controlled. To cope with grinding burn, the use of grinding power signatures is an effective monitoring systems when occurring the grinding process. In this paper, the identified parameters suggested in this study which are derived from the grinding power signatures are presented, and prediction model by grinding power utilized a linear regression algorithm is applied.

  • PDF

Comparative Study for the Standardization of Grinding Equipment During Dry Grinding Process by Various Grinding Mills (다양한 매체형 분쇄기를 이용한 건식 분쇄공정에서 장비의 표준화를 위한 분쇄실험의 비교 연구)

  • Bor, Amgalan;Sakuragi, Shiori;Lee, Jehyun;Choi, Heekyu
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.305-316
    • /
    • 2015
  • The study of grinding behavior characteristics on the metal powders has recently gained scientific interest due to their useful applications to enhance advanced nano materials and components. This could significantly improve the property of new mechatronics integrated materials and components. So, a new evaluation method for standardizing grinding equipment and a comparative study for the grinding experiment during the grinding process with various grinding mills were investigated. The series of grinding experiments were carried out by a traditional ball mill, stirred ball mill, and planetary ball mill with various experimental conditions. The relationship between the standardization of equipment and experimental results showed very significant conclusions. Furthermore, the comparative study on the grinding experiment, which investigated changes in particle size, particle morphology, and crystal structure of materials with changes in experimental conditions for grinding equipment, found that the value of particle size distribution is related to the various experimental conditions as a revolution speed of grinding mill and media size.

A Study on the Grinding Force of Silicon (실리콘 연삭력에 관한 연구)

  • Lee, Choong-Seok;Chae, Seung-Su;Kim, Jong-Pyo;Lee, Jong-Chan;Choi, Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.33-38
    • /
    • 2006
  • Silicon has been widely used in electronic parts as a semiconductor equipment. It, however, requires much effort to grind without microcrack and chipping because of its high hardness and brittleness. So far, many studies for the grinding of engineering ceramics have been done, but not for the grinding of silicon. In this paper, a theoretical analysis on the grinding forces is introduced. Grinding experiments were performed at various grinding conditions including grinding directions (Up grinding and Down grinding), table speeds and depth of cuts. The grinding forces were measured to compare at various grinding conditions. The experimental values agree well with theoretical ones.

  • PDF

A Study on the Comparison of Internal Plunge Grinding and Internal Thrust Grinding (내면 플런지 연삭과 스러스트 연삭의 비교)

  • Choi, Hwan;Seo, Chang-Yeon;Seo, Young-Il;Lee, Choong-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.68-73
    • /
    • 2016
  • In this paper, the grinding characteristics in internal grinding methods(plunge, thrust) were studied with vitreous CBN wheels using machining center. Grinding experiments were performed according to the same material removal rate conditions such as a wheel speed, depth of cut and workpiece speed. And the grinding force, machining error and grinding ratio were investigated though these experiments. Based on the experimental results, the grinding characteristics on internal grinding methods were compared.

The Optimum Grinding Condition Selection of Grinding System (연삭시스템의 최적연삭가공조건)

  • Lee S.W.;Choi Y.J.;Hoe N.H.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.563-564
    • /
    • 2006
  • In silicon wafer manufacturing process, the grinding process has been adopted to improve the flatness of water. The grinding of wafer is usually used by the infeed grinding machine. Grinding conditions are spindle speed, feed speed, rotation speed, grinding stone etc. But grinding condition selection and analysis is so difficult in grinding machine. In the intelligent grinding system based on knowledge many researchers have studied expert system, neural network, fuzzy etc. In this paper we deal grinding condition selection method, Taguchi method and Genetic Analysis.

  • PDF

Modeling of the Centerless Through-feed Grinding Process

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1036-1043
    • /
    • 2003
  • A computer simulation method for investigating the form generation mechanism in the centerless through-feed grinding process is described. The length of the contact line and the magnitude of the grinding force between the grinding wheel and workpieces, vary with the change in the axial location of the current workpiece during grinding. Thus, a new coordinate system and a grinding force curve of previous and/or following workpieces are introduced to treat the axial motion. Experiments and computer simulations were carried out using four types of cylindrical workpiece shapes. To validate this model, simulation results are compared with the experimental results.