• Title/Summary/Keyword: grid stabilization

Search Result 71, Processing Time 0.024 seconds

PLL Control Strategy for ZVRT(Zero Voltage Ride Through) of a Grid-connected Single-phase Inverter (계통연계형 단상 인버터의 ZVRT(Zero Voltage Ride Through)를 위한 PLL 제어 전략)

  • Lee, Tae-Il;Lee, Kyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.169-180
    • /
    • 2019
  • Grid codes for grid-connected inverters are essential considerations for bulk grid systems. In particular, a low-voltage ride-through (LVRT) function, which can contribute to the grid system's stabilization with the occurrence of voltage sag, is required by such inverters. However, when the grid voltage is under zero-voltage condition due to a grid accident, a zero-voltage ride-through (ZVRT) function is required. Grid-connected inverters typically have phase-locked loop (PLL) control to synchronize the phase of the grid voltage with that of the inverter output. In this study, the LVRT regulations of Germany, the United States, and Japan are analyzed. Then, three major PLL methods of grid-connected single-phase inverters, namely, notch filter-PLL, dq-PLL using an active power filter, and second-order generalized integrator-PLL, are reviewed. The proposed PLL method, which controls inverter output under ZVRT condition, is suggested. The proposed PLL operates better than the three major PLL methods under ZVRT condition in the simulation and experimental tests.

A Study on the Design and Control Characteristics for Optimum Operation of the PV System-based ESS (PV System 기반 ESS의 최적운전을 위한 설계 및 제어 특성에 관한 연구)

  • Cha, Insu;Park, Jongbok;Jung, Gyeonghwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.19-30
    • /
    • 2016
  • In this study, realize voltage regulation $220Vac{\pm}10%$ or less, frequency fluctuation $60Hz{\pm}1%$ or less over the independent operation and grid-connected operation technologies for power stabilization relates to the ESS designed and manufactured in conjunction with solar installations and solar to compensate the output reduction due to the polarization of the solar module through the polarization prevention technology for preventing the optical module efficiency is lowered, in conjunction with the BMS inverter efficiency was more than 92%, more than 90% of the charging efficiency to the target. This study was designed in conjunction with the ESS solar power plants, grid-connected operation and independent operation, Peak-Cut, it can stabilize the grid via the Peak-Shifting operation

Evolving Neural Network for Stabilization Control of Inverted Pendulum (진화 신경회로망을 이용한 도립진자 시스템의 안정화)

  • Shim, Young-Jin;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.963-965
    • /
    • 1999
  • A linear chromosome combined with a grid-based representation of the network and a new crossover operator allow the evolution of the architecture and the weights simultaneously. In our approach there is no need for a separate weight optimization procedure and networks with more than one type of activation function can be evolved. In this paper one evolutionary' strategy of a given dual neural controller was introduced and the simulation results were described in detail through applications to a stabilization control of an Inverted Pendulum System.

  • PDF

A Study of Grid-Connected PV System with Power Control Structure

  • Vu, Trung-Kien;Bae, Youngsang;Oh, Seongjin
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.329-330
    • /
    • 2012
  • The rising popularity of renewable energy sources resulted in development of the units of higher rated powers, where the large-scale plants and grid-connected type solar power systems are increased. Therefore, the importance of grid stabilization, which depends on each country or system-type, has been strengthened by different grid-codes or certifications. In this paper, the control scheme of three-phase photovoltaic system is enhanced, where both injected active and reactive powers are simultaneously controlled with the consideration of the certification of the Germany Association of Energy and Water Industries (BDEW). Experimental results are shown to verify the theoretical analysis.

  • PDF

Optimal Control Design-based Gain Selection of an LCL-filtered Grid-connected Inverter in State-Space under Distorted Grid Environment

  • Tran, Vi-Thuy;Yoon, Seung-Jin;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.344-345
    • /
    • 2018
  • In order to alleviate the negative impacts of harmonically distorted grid condition on grid-connect inverters, an optimal control design-based gain selection scheme of an LCL-filtered grid-connected inverter and its ability to compensate selective harmonics are presented in this paper. By incorporating resonant terms into the control structure in the state-space to provide infinity gain at selected frequencies, the proposed control offers an excellent steady-state response even under distorted grid voltage. The proposed control scheme is achieved by using a state feedback controller for stabilization purpose and by augmenting the resonant terms as well as intergral term into a control structure for reference tracking and harmonic compensation. Furthermore, the optimal linear quadratic control approach is adopted for choosing an optimal feedback gain to ensure an asymptotic stability of the whole system. A discrete-time full state observer is also introduced into the proposed control scheme for the purpose of reducing a total number of sensors used in the inverter system. The simulation results are given to prove the effectiveness and validity of the proposed control scheme.

  • PDF

Design and Evaluation of PMU Performance Measurement and GPS Monitoring System for Power Grid Stabilization

  • Yang, Sung-Hoon;Lee, Chang Bok;Lee, Young Kyu;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • Power grid techniques are distributed over general power systems ranging from power stations to power transmission, power distribution, and users. To monitor and control the elements and performance of a power system in real time in the extensive area of power generation, power transmission, wide-area monitoring (WAM) and control techniques are required (Sattinger et al. 2007). Also, to efficiently operate a power grid, integrated techniques of information and communication technology are required for the application of communication network and relevant equipment, computing, and system control software. WAM should make a precise power grid measurement of more than once per cycle by time synchronization using GPS. By collecting the measurement values of a power grid from substations located at faraway regions through remote communication, the current status of the entire power grid system can be examined. However, for GPS that is used in general national industries, unexpected dangerous situations have occurred due to its deterioration and jamming. Currently, the power grid is based on a synchronization system using GPS. Thus, interruption of the time synchronization system of the power system due to the failure or abnormal condition of GPS would have enormous effects on each field such as economy, security, and the lives of the public due to the destruction of the synchronization system of the national power grid. Developed countries have an emergency substitute system in preparation for this abnormal situation of GPS. Therefore, in Korea, a system that is used to prepare for the interruption of GPS reception should also be established on a long-term basis; but prior to this, it is required that an evaluation technique for the time synchronization performance of a GPS receiver using an atomic clock within the power grid. In this study, a monitoring system of time synchronization based on GPS at a power grid was implemented, and the results were presented.

Design Considerations for a Distributed Generation System Using a Voltage-Controlled Voltage Source Inverter

  • Ko, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong;Naya, Chemmangot V.;won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.643-653
    • /
    • 2009
  • Voltage-controlled voltage source inverter (VCVSI) based distributed generation systems (DGS) using renewable energy sources (RES) is becoming increasingly popular as grid support systems in both remote isolated grids as well as end of rural distribution lines. In VCVSI based DGS for load voltage stabilization, the power angle between the VCVSI output voltage and the grid is an important design parameter because it affects not only the power flow and the power factor of the grid but also the capacity of the grid, the sizing of the decoupling inductor and the VCVSI. In this paper, the steady state modeling and analysis in terms of power flow and power demand of the each component in the system at the different values of maximum power angle is presented. System design considerations are examined for various load and grid conditions. Experimental results conducted on a I KVA VCVSI based DGS prove the analysis and simulation results.

A Study on the Change and Improvement of Smart Grid Policy after the Great East Japan Earthquake (동일본대지진 이후 일본 스마트그리드 정책의 변천과 개선방안 연구)

  • Lee, Jum-Soon
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.41-53
    • /
    • 2017
  • This study focuses on the current state of Smart Grid policy in Japan and its problems while the interest in Smart Grid has been increasing since the March 2011 earthquake in East Japan. As a result of the analysis, Japan introduced the fixed price buying system of new and renewable energy in response to the power supply and demand problem caused by the 2011 earthquake in East Japan, and established a decentralized green electricity trading market in which electricity generated from new and renewable energy is traded Smart Grid-related projects were implemented as a solution to solve energy crisis and environmental problems at the same time. As a result, we achieved visible results such as suppressing peak power, reducing CO2 emissions, and securing stable supply and demand of energy using renewable energy sources. On the other hand, the improvement of current Smart Grid policy operation in Japan and the introduction of stabilization system of power system, promotion of international standards of domestic technology related to smart grid, and support for strengthening security of smart grid.

Implementation of a Photovoltaic System Simulator for Interconnecting with Bipolar ±750V DC distribution Grid (바이폴 ±750 직류 배전망 연계용 태양광 발전 시뮬레이터 구현)

  • Kim, Tae-Hoon;Kim, Seok-Woong;Cho, Jin-Tae;Kim, Ju-Yong;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1800-1805
    • /
    • 2016
  • The micro-grid designed as bipolar ${\pm}750V$ low-voltage DC power distribution system demonstrated by KEPRI, demands interconnection of a number of small decentralized power source including variable renewable generator. Therefore, variable researches for the influence of interconnection with the bipolar typed DC grid and these variable power sources are required for superior quality of power distribution. Renewable power generation simulators for the bipolar ${\pm}750V$ low-voltage DC power distribution system are necessary for such researches. In this paper, we carry out a research on the photovoltaic simulator that be actually able to interconnect with a bipolar ${\pm}750V$ low-voltage micro-grid. Simulator for this research is not only able to simulate photovoltaic generation according to weather informations and PV modules characteristics, but also contribute to stabilization of bipolar ${\pm}750V$ low-voltage of the system. Therefore, the simulator was designed to develop a system that can situationally respond to variable control algorithms such as the MPPT control, droop control, EMS power control, etc.

Secure Data Transaction Protocol for Privacy Protection in Smart Grid Environment (스마트 그리드 환경에서 프라이버시 보호를 위한 안전한 데이터 전송 프로토콜)

  • Go, Woong;Kwak, Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1701-1710
    • /
    • 2012
  • Recently, it has been found that it is important to use a smart grid to reduce greenhouse-gas emissions worldwide. A smart grid is a digitally enabled electrical grid that gathers, distributes, and acts on information regarding the behavior of all participants (suppliers and consumers) to improve the efficiency, importance, reliability, economics, and sustainability of electricity services. The smart grid technology uses two-way communication, where users can monitor and limit the electricity consumption of their home appliances in real time. Likewise, power companies can monitor and limit the electricity consumption of home appliances for stabilization of the electricity supply. However, if information regarding the measured electricity consumption of a user is leaked, serious privacy issues may arise, as such information may be used as a source of data mining of the electricity consumption patterns or life cycles of home residents. In this paper, we propose a data transaction protocol for privacy protection in a smart grid. In addition, a power company cannot decrypt an encrypted home appliance ID without the user's password.