• 제목/요약/키워드: grid model

검색결과 2,501건 처리시간 0.027초

Sustainable Smart City Building-energy Management Based on Reinforcement Learning and Sales of ESS Power

  • Dae-Kug Lee;Seok-Ho Yoon;Jae-Hyeok Kwak;Choong-Ho Cho;Dong-Hoon Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1123-1146
    • /
    • 2023
  • In South Korea, there have been many studies on efficient building-energy management using renewable energy facilities in single zero-energy houses or buildings. However, such management was limited due to spatial and economic problems. To realize a smart zero-energy city, studying efficient energy integration for the entire city, not just for a single house or building, is necessary. Therefore, this study was conducted in the eco-friendly energy town of Chungbuk Innovation City. Chungbuk successfully realized energy independence by converging new and renewable energy facilities for the first time in South Korea. This study analyzes energy data collected from public buildings in that town every minute for a year. We propose a smart city building-energy management model based on the results that combine various renewable energy sources with grid power. Supervised learning can determine when it is best to sell surplus electricity, or unsupervised learning can be used if there is a particular pattern or rule for energy use. However, it is more appropriate to use reinforcement learning to maximize rewards in an environment with numerous variables that change every moment. Therefore, we propose a power distribution algorithm based on reinforcement learning that considers the sales of Energy Storage System power from surplus renewable energy. Finally, we confirm through economic analysis that a 10% saving is possible from this efficiency.

Intelligent System for the Prediction of Heart Diseases Using Machine Learning Algorithms with Anew Mixed Feature Creation (MFC) technique

  • Rawia Elarabi;Abdelrahman Elsharif Karrar;Murtada El-mukashfi El-taher
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.148-162
    • /
    • 2023
  • Classification systems can significantly assist the medical sector by allowing for the precise and quick diagnosis of diseases. As a result, both doctors and patients will save time. A possible way for identifying risk variables is to use machine learning algorithms. Non-surgical technologies, such as machine learning, are trustworthy and effective in categorizing healthy and heart-disease patients, and they save time and effort. The goal of this study is to create a medical intelligent decision support system based on machine learning for the diagnosis of heart disease. We have used a mixed feature creation (MFC) technique to generate new features from the UCI Cleveland Cardiology dataset. We select the most suitable features by using Least Absolute Shrinkage and Selection Operator (LASSO), Recursive Feature Elimination with Random Forest feature selection (RFE-RF) and the best features of both LASSO RFE-RF (BLR) techniques. Cross-validated and grid-search methods are used to optimize the parameters of the estimator used in applying these algorithms. and classifier performance assessment metrics including classification accuracy, specificity, sensitivity, precision, and F1-Score, of each classification model, along with execution time and RMSE the results are presented independently for comparison. Our proposed work finds the best potential outcome across all available prediction models and improves the system's performance, allowing physicians to diagnose heart patients more accurately.

정형·비정형 우도를 이용한 LENS-GRM 불확실성 해석 (A study on the uncertainty analysis of LENS-GRM using formal and informal likelihood measure)

  • 이상협;추인교;유영욱;정영훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.317-317
    • /
    • 2020
  • 수재해는 수자원 인프라의 부족 및 관리 미흡 등 많은 요인들이 있지만 강우의 유무와 크기가 가장 원초적인 요인들 중 하나이다. 정확한 강우량 추정 및 강우발생시간 예측은 수재해로 인한 피해를 예방하고 빠르게 대처할 수 있다. 그러나 강우예측에는 많은 불확실성을 내포하고 있기 때문에 이러한 불확실성을 이해하고 줄여 나가는 것이 필요하다. 최근 컴퓨터의 성능의 발전에 비례해 강우 예측 자료들도 점진적으로 발전을 거듭하고 있다. 이를 강우-유출 모형에 적용시 유출량 예측의 정확성 또한 비례하여 한층 더 발전할 수 있을 것이다. 하지만 신뢰성이 낮은 입력자료를 대상으로 하는 유출해석 모형은 많은 불확실성을 내포할 것이다. 따라서 본 연구에서는 위천 유역에 대해 LENS(Limited area ENsemble prediction System) 강우앙상블 예측자료의 적용성을 검토하고 그리드 기반 강우 유출 모델 GRM(Grid based Rainfall-runoff Model) 에 적용하여 유출예측의 불확실성을 평가하고자 하였다. 또한 강우예측 및 유출예측은 수 많은 매개변수를 포함하며 최종적인 예측은 더 큰 불확실한 범위로 산출될 수 있다. 이에 따라 본 연구에서는 Python3 기반 코딩으로 LENS 자료 구축 및 GRM 모형의 매개변수 보정을 각 2000회 씩에 걸쳐 총 2회 실시하여 수문학적, 지형학적 인자에 따른 불확실성 범위를 보정하고자 하였다. 매개변수의 보정은 비정형우도(Informal likelihood) NSE, 정형우도(Formal likelihood) Lognormal(Log-likelihood function)의 우도에 따른 행위모델을 산정하여 보정하였다. 따라서 본 연구에서는 선행연구들을 참고한 정형, 비정형 우도의 임계치를 이용한 불확실성해석에 적용하였으며 이는 사용자의 행위모델선정 임계치 범위 선정으로 인한 불확실성을 줄여나감에 기여할 수 있을것으로 사료된다.

  • PDF

Backward estimation of precipitation from high spatial resolution SAR Sentinel-1 soil moisture: a case study for central South Korea

  • Nguyen, Hoang Hai;Han, Byungjoo;Oh, Yeontaek;Jung, Woosung;Shin, Daeyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.329-329
    • /
    • 2022
  • Accurate characterization of terrestrial precipitation variation from high spatial resolution satellite sensors is beneficial for urban hydrology and microscale agriculture modeling, as well as natural disasters (e.g., urban flooding) early warning. However, the widely-used top-down approach for precipitation retrieval from microwave satellites is limited in several hydrological and agricultural applications due to their coarse spatial resolution. In this research, we aim to apply a novel bottom-up method, the parameterized SM2RAIN, where precipitation can be estimated from soil moisture signals based on an inversion of water balance model, to generate high spatial resolution terrestrial precipitation estimates at 0.01º grid (roughly 1-km) from the C-band SAR Sentinel-1. This product was then tested against a common reanalysis-based precipitation data and a domestic rain gauge network from the Korean Meteorological Administration (KMA) over central South Korea, since a clear difference between climatic types (coasts and mainlands) and land covers (croplands and mixed forests) was reported in this area. The results showed that seasonal precipitation variability strongly affected the SM2RAIN performances, and the product derived from separated parameters (rainy and non-rainy seasons) outperformed that estimated considering the entire year. In addition, the product retrieved over the mainland mixed forest region showed slightly superior performance compared to that over the coastal cropland region, suggesting that the 6-day time resolution of S1 data is suitable for capturing the stable precipitation pattern in mainland mixed forests rather than the highly variable precipitation pattern in coastal croplands. Future studies suggest comparing this product to the traditional top-down products, as well as evaluating their integration for enhancing high spatial resolution precipitation over entire South Korea.

  • PDF

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
    • Ocean Systems Engineering
    • /
    • 제14권1호
    • /
    • pp.85-99
    • /
    • 2024
  • Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • 제39권1호
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.

진동 아날로그 신호 기반의 이상상황 탐지를 위한 기계학습 모형의 성능지표 향상 (Improving the Performance of Machine Learning Models for Anomaly Detection based on Vibration Analog Signals)

  • 김재훈;엄상천;박철순
    • 산업경영시스템학회지
    • /
    • 제47권2호
    • /
    • pp.1-9
    • /
    • 2024
  • New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.

고해상도 재분석자료와 관측소 1시간 평균 지상 온도 비교 (Comparisons of 1-Hour-Averaged Surface Temperatures from High-Resolution Reanalysis Data and Surface Observations)

  • 송형규;윤대옥
    • 한국지구과학회지
    • /
    • 제41권2호
    • /
    • pp.95-110
    • /
    • 2020
  • 본 연구에서는 고해상도 ERA5 재분석자료 중 우리나라 지상 온도 자료의 신뢰성을 검증할 목적으로 종관기상관측소(ASOS) 관측자료와 비교를 수행하였다. 새롭게 생산되어 배포 중인 ERA5 재분석자료는 높은 시·공간적 해상도를 가져 여러 분야에 활용성이 매우 높다. 자료의 분석 기간은 ASOS 61개 관측소가 1999년 이후로 결측률이 매우 낮으며 시간평균 자료를 제공한다는 점을 고려하여 1999-2018년 기간으로 설정하였다. ERA5 격자 자료는 격자 내 90-m 수치표고모델(DEM) 분포로부터 내륙, 해안, 산악 지역에 해당하는 지형학적인 특성에 따라 분류하여 ASOS 지점 자료와 비교되었다. 분석 기간 전체에 대한 평균 지상 온도는 ASOS와 ERA5 모두 공간 분포의 패턴과 값은 큰 차이없이 유사하였다. ASOS와 ERA5의 산점도 비교를 통해 전체 기간, 특히 여름, 겨울 기간에 대해 계절 변동성을 가진다는 특성을 확인할 수 있었으며, 이는 달별 두 자료 사이의 매시간 차이 확률밀도함수(PDF)의 시계열을 통해서도 확인되었다. 두 자료 사이의 차이를 통계지수인 NMB, RMSE를 계산하여 정량화시켰을 때, 각 값에서 지역적인 특성을 보였으나 모든 지수에서 큰 차이가 없다고 판단할 수 있었으며, 상관성을 보기 위해 R과 IOA를 통해 구한 값은 모두 0.99에 근접하였다. 특히 일평균 산출에 있어 1-시간-평균 값 24개를 이용한 일평균의 경우가 최고와 최저온도의 평균을 이용하는 일평균에 비해 오차가 작게 나타났고, 두 자료 사이의 상관성도 높게 나타남을 확인하였다. 두 자료의 차이가 나타나는 원인으로 ERA5 격자 내 지형 효과가 가장 클 것으로 판단하여 수치표고모델을 활용하여 각 지역별 PDF를 이용해 첨도 및 왜도를 구하고, 이를 온도 차이 파워 스펙트럼의 1년 주기 변동 크기와 비교하였다. 그 결과, 양의 상관성을 가졌음을 확인하였다. 이는 지형 효과가 두 자료 차이의 원인이라고 설명하는 결과이다.

서남해에서 해상풍력구조물의 건설에 의한 해저지형의 변화예측 (Prediction of Seabed Topography Change Due to Construction of Offshore Wind Power Structures in the West-Southern Sea of Korea)

  • 정승명;권경환;이종섭;박일흠
    • 한국해안·해양공학회논문집
    • /
    • 제31권6호
    • /
    • pp.423-433
    • /
    • 2019
  • 서남해에서 해상풍력구조물의 건설에 따른 해저지형변화를 예측하기 위하여, 조석, 조류, 부유사 그리고 해저질 등에 대한 현장조사를 수행하였고, 이들 자료를 수치실험에 활용될 수 있도록 하였다. 수치실험에서 표사량 산정은 관련 상수를 시행착오적으로 변화시켜 관측된 부유사농도에 대해 계산치의 오차가 적당할 때에 경험상수들을 결정하는 방법을 사용하였는데, 어떤 농도분포인자가 0.1 그리고 부유사 평형농도 공식의 비례상수가 0.05일 때, 관측치와 계산치가 합리적으로 유사하였다. 부유사농도에 관한 개경계조건은 관측된 부유사농도에 대해 남동측 경계점에서 11.0배, 남서측 경계점에서 0.5배, 서북측 경계점에서 1.0배, 북서측 경계점에서 1.0배 그리고 북동측 경계점에서 1.0배이었을 때, 개경계와 서로 인접한 계산영역 내의 수심변화 계산결과가 단속적이지 않고 매끄럽게 나타났다. 그리고 연간침식퇴적량은 해상풍력 구조물의 건설전후에 대하여 그 변화가 ± 1 cm 이상 발생하는 해역은 거의 나타나지 않았는데, 사용된 대격자 수치모형은 세굴과 같은 국지적 현상을 재현할 수 없고, 해상풍력 하부구조물이 직경 1 m 정도의 자켓타입의 투과식이어서 이들에 의하여 ± 2 cm/s 이상의 유의미한 유속변화역이 거의 나타나지 않았기 때문에, 해저지형변화가 미미한 것은 당연한 결과인 것으로 판단되었다.

남해 대륙붕 PZ-1 시추공 주변 현무암 대지 구조의 CO2 지중저장용량 평가 (Assessment of CO2 Geological Storage Capacity for Basalt Flow Structure around PZ-1 Exploration Well in the Southern Continental Shelf of Korea)

  • 신승용;강무희;신영재;정순홍
    • 자원환경지질
    • /
    • 제53권1호
    • /
    • pp.33-43
    • /
    • 2020
  • CO2 지중저장은 현재 온실가스 감축을 위한 CCS(Carbon Capture & Storage) 저장기술 중 가장 안정적이고 효과적인 기술로 평가되고 있다. 지중저장 대상 염대수층은 일반적으로 CO2가 초임계상태로 저장될 수 있는 지하 800 m 이상의 심도에 위치하고, 그 상부에 지표로의 CO2 누출을 막는 광역적인 불투수성 덮개암층이 분포해야 한다. 본 연구에서는 남해 대륙붕 탄성파 및 시추공 자료를 해석하여 덮개암으로 활용할 수 있는 현무암층과, 하부 염대수층이 발달하고 있는 현무암 대지 구조를 CO2 지중저장 유망구조로 제시하였다. 연구지역 주입대상 염대수층의 지중저장용량을 평가하기 위해 총 공극률은 시추공 감마 및 음파검층 자료를 이용하여 산출하였으며, 염대수층 구간의 온도/압력 조건을 고려하여 CO2 밀도를 계산하였다. 정확한 주입대상 염대수층의 체적을 산정하기 위해 x, y, z 축 방향으로 일정한 크기를 가지는 3차원 지질 격자 모델을 구성하였고, 염대수층 3차원 공간의 물성 분포를 지구통계학적 기법으로 예측하는 물성 모델링을 수행하여 총 공극률 값을 지질 격자에 할당하였다. U.S. DOE 방법을 이용하여 남해 대륙붕 현무암 대지 구조의 CO2 지중저장용량 평가 결과 평균 약 8,417만 CO2톤(최소 4,207만 ~ 최대 1억 4,379만 CO2톤)이 주입대상 염대수층 구간에 저장 가능한 것으로 예측되었다.