• Title/Summary/Keyword: grid deformation

Search Result 144, Processing Time 0.034 seconds

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

Rigid-plastic Finite Element Analysis for the Characteristics of Deformation in Upsetting Solid Cylinders (강소성 유한요소법 에 의한 중실 원통봉 업세팅 의 변형 특성 해석)

  • 백남주;최재찬;윤동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.725-731
    • /
    • 1985
  • In this study the rigid-plastic finite element method is used in order to study the deformation characteristics of solid cylinder upsetting. The effects of friction and aspect ratios on the effective strain distribution, axial stresses at the die-material interface, radial displacements, strain components, grid distortion on the meridional cross-section and gradual changes of outer profile are studied analyzed and compared with the experiments for commercially pure aluminum and .alpha.-brass. The agreement between numerical (or theoretical)and experimental results is shown to be acceptable for the engineering purpose.

Typology of Dress in Contemporary Fashion

  • Yim, Eunhyuk;Istook, Cynthia
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.98-115
    • /
    • 2017
  • This study categorizes the formative aspects of dress and their implications according to the extent of revealing or concealing corporeality based on body perceptions. By considering the notion of dress as bodily practice to be a theoretical and methodological framework, this study combines a literature survey and case analysis to analyze and classify the forms of women's dress since the 1920s when contemporary fashion took hold. As examined in this study, the typology of dress was categorized as body-consciousness, deformation, transformation, and formlessness. Body-consciousness that is achieved through tailoring, bias cutting, and stretchy fabric displays corporeality focusing on the structure and function of the body as an internalized corset. Deformations in dress are categorized into two different subcategories. One is the expansion or reduction of bodily features based on the vertical or horizontal grids of the body, which visualizes the anachronistic restraint of the body through an innerwear as outerwear strategy. The other is exaggerations of the bodily features irrelevant to the grid, which break from the limitations and constraints of the body as well as traditional notions of the body. Transformations of the body refer to as follows. First, the deconstruction and restructuring of the body that deconstruct the stereotypes in garment construction. Second, the abstraction of the body that emphasizes the geometrical and architectural shapes. Third, transformable designs which pursue the expansion and multiplicity of function. Formlessness in dress denies the perception of three-dimensionality of the body through the planarization of the body.

A DQ nonlinear bending analysis of skew composite thin plates

  • Malekzadeh, P.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.161-180
    • /
    • 2007
  • A first endeavor is made to exploit the differential quadrature method (DQM) as a simple, accurate, and computationally efficient numerical tool for the large deformation analysis of thin laminated composite skew plates, which has very strong singularity at the obtuse vertex. The geometrical nonlinearity is modeled by using Green's strain and von Karman assumption. A recently developed DQ methodology is used to exactly implement the multiple boundary conditions at the edges of skew plates, which is a major draw back of conventional DQM. Using oblique coordinate system and the DQ methodology, a mapping-DQ discretization rule is developed to simultaneously transform and discretize the equilibrium equations and the related boundary conditions. The effects of skew angle, aspect ratio and different types of boundary conditions on the convergence and accuracy of the presented method are studied. Comparing the results with the available results from other numerical or analytical methods, it is shown that accurate results are obtained even when using only small number of grid points. Finally, numerical results for large deflection behavior of antisymmetric cross ply skew plates with different geometrical parameters and boundary conditions are presented.

KFLOW Results of Airloads on HART-II Rotor Blades with Prescribed Blade Deformation

  • Sa, Jeong-Hwan;Kim, Jee-Woong;Park, Soo-Hyung;Park, Jae-Sang;Jung, Sung-Nam;Yu, Yung-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.52-62
    • /
    • 2009
  • A three-dimensional compressible Navier-Stokes solver, KFLOW, using overlapped grids has recently been developed to simulate unsteady flow phenomena over helicopter rotor blades. The blade-vortex interaction is predicted for a descending flight using measured blade deformation data. The effects of computational grid resolution and azimuth angle increments on airloads were examined, and computed airloads and vortex trajectories were compared with HART-II wind tunnel data. The current method predicts the BVI phenomena of blade airloads reasonably well. It is found from the present study that a peculiar distribution of vorticity of tip vortices in an approximate azimuth angle range of 90 to 180 degrees can be explained by physics of the shear-layer interaction as well as the dissipation of numerical schemes.

A Numerical Validation for Incompressible Two-phase Flow using CLSVOF and Artificial Compressibility Methods (CLSVOF과 가상압축성 기법을 이용한 비압축성 2상 유동 수치해석 검증 연구)

  • Yoo, Young-Lin;Choi, Jeong-Yeol;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.71-79
    • /
    • 2017
  • A numerical analysis of the liquid-gas two-phase flows has been conducted. The incompressible equations of the two-phase flows were solved by the artificial compressibility method with the CLSVOF interface capturing method. To analyze the grid dependency of CLSVOF, a numerical analysis of Zalesak's disk and three-dimensional liquid deformation problem were carried out, and the reconstruction of deformation was investigated. The Rayleigh-Taylor instability was numerically analyzed by applying the equations of incompressible two-phase flow, and the surface instability was observed.

Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry (마이크로 무아레 간섭계를 이용한 초정밀 변형 측정)

  • Joo, Jin-Won;Kim, Han-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM

  • Polatov, Askhad M.;Khaldjigitov, Abduvali A.;Ikramov, Akhmat M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.305-321
    • /
    • 2020
  • In this paper is presented the solution method for three-dimensional problem of transversely isotropic body's elastoplastic deformation by the finite element method (FEM). The process of problem solution consists of: determining the effective parameters of a transversely isotropic medium; construction of the finite element mesh of the body configuration, including the determination of the local minimum value of the tape width of non-zero coefficients of equation systems by using of front method; constructing of the stiffness matrix coefficients and load vector node components of the equation for an individual finite element's state according to the theory of small elastoplastic deformations for a transversely isotropic medium; the formation of a resolving symmetric-tape system of equations by summing of all state equations coefficients summing of all finite elements; solution of the system of symmetric-tape equations systems by means of the square root method; calculation of the body's elastoplastic stress-strain state by performing the iterative process of the initial stress method. For each problem solution stage, effective computational algorithms have been developed that reduce computational operations number by modifying existing solution methods and taking into account the matrix coefficients structure. As an example it is given, the problem solution of fibrous composite straining in the form of a rectangle with a system of circular holes.

Thermomechanical and Flexural Behavior of WB-PBGA Package Using $Moir{\acute{e}}$ Interferometry (모아레 간섭계를 이용한 WB-PBGA 패키지의 온도변화 및 굽힘하중에 대한 거동해석)

  • Joo, Jin-Won;Lee, Chang-Hee;Han, Bong-Tae;Cho, Seung-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.90-95
    • /
    • 2001
  • Thermo-mechanical and flexural behavior of a wire-bond plastic ball grid array (WB-PBGA) are characterized by high sensitive $moir{\acute{e}}$ interferometry. $Moir{\acute{e}}$ fringe patterns are recorded and analyzed at several various bending loads and temperature steps. At the temperature higher that $100^{\circ}C$, the inelastic deformation in solder balls became more dominant. As a result the bending of the molding compound decreased while temperature increased. The strain results show that the solder ball located at the edge of the chip has largest shear strain by the thermal load while the maximum average shear strain by the bending moment occurs in the end solder. The results also show that $moir{\acute{e}}$ interferometry is a powerful and effective tool in experimental studies of electronic packaging.

  • PDF