• 제목/요약/키워드: grey level co-occurrence matrix

검색결과 13건 처리시간 0.034초

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

Tack Coat Inspection Using Unmanned Aerial Vehicle and Deep Learning

  • da Silva, Aida;Dai, Fei;Zhu, Zhenhua
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.784-791
    • /
    • 2022
  • Tack coat is a thin layer of asphalt between the existing pavement and asphalt overlay. During construction, insufficient tack coat layering can later cause surface defects such as slippage, shoving, and rutting. This paper proposed a method for tack coat inspection improvement using an unmanned aerial vehicle (UAV) and deep learning neural network for automatic non-uniform assessment of the applied tack coat area. In this method, the drone-captured images are exploited for assessment using a combination of Mask R-CNN and Grey Level Co-occurrence Matrix (GLCM). Mask R-CNN is utilized to detect the tack coat region and segment the region of interest from the surroundings. GLCM is used to analyze the texture of the segmented region and measure the uniformity and non-uniformity of the tack coat on the existing pavements. The results of the field experiment showed both the intersection over union of Mask R-CNN and the non-uniformity measured by GLCM were promising with respect to their accuracy. The proposed method is automatic and cost-efficient, which would be of value to state Departments of Transportation for better management of their work in pavement construction and rehabilitation.

  • PDF

GLCM을 이용한 다중 베르누이 확률 변수 기반 자동 영상 동적 키워드 추출 방법 (Automatically Dynamic Image Annotation Method Based on Multiple Bernoulli Relevance Models Using GLCM Feature)

  • 박태준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.335-336
    • /
    • 2009
  • In this paper, I propose an automatic approach to annotating images dynamically based on MBRM(Multiple Bernoulli Relevance Models) using GLCM(Grey Level Co-occurrence Matrix). MBRM is more appropriate to annotate images compare with multinomial distribution. The model is used in limited test set, MSRC-v2 (Microsoft Research Cambridge Image Database). The results show that this model is significantly outperforms previously reported results on the task of image annotation and retrieval.

어두운 환경에 강인한 번호판 추출을 위한 레이블링 Hough Transform과 GLCM 기반의 탐색 기법 (The Method Based on Labeled Hough Transform and GLCM for License Plate Detection)

  • 박태준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.333-334
    • /
    • 2009
  • In this paper, I propose the novel method based on Labeled Hough transform and GLCM(Grey-Level Co-occurrence Matrix) for license plate detection. A lot of conventional methods have been proposed to detect the license plate, but those are useless in order to detect the license plate well in case of dark or unstable images. Histogram equalization is preprocessed to each image before applying this method. As a result, the license plate is detected accurately

Implementation for Texture Imaging Algorithm based on GLCM/GLDV and Use Case Experiments with High Resolution Imagery

  • Jeon So Hee;Lee Kiwon;Kwon Byung-Doo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.626-629
    • /
    • 2004
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program for GLCM algorithm is newly implemented in the MS Visual IDE environment. While, additional texture imaging modules based on GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV texture variables, it composed of six types of second order texture function in the several quantization levels of 2(binary image), 8, and 16: Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality, four directions are provided as $E-W(0^{\circ}),\;N-E(45^{\circ}),\;S-W(135^{\circ}),\;and\;N-S(90^{\circ}),$ and W-E direction is also considered in the negative direction of E- W direction. While, two direction modes are provided in this program: Omni-mode and Circular mode. Omni-mode is to compute all direction to avoid directionality problem, and circular direction is to compute texture variables by circular direction surrounding target pixel. At the second phase of this study, some examples with artificial image and actual satellite imagery are carried out to demonstrate effectiveness of texture imaging or to help texture image interpretation. As the reference, most previous studies related to texture image analysis have been used for the classification purpose, but this study aims at the creation and general uses of texture image for urban remote sensing.

  • PDF

강인한 움직임 영역 검출과 화재의 효과적인 텍스처 특징을 이용한 화재 감지 방법 (Fire Detection Approach using Robust Moving-Region Detection and Effective Texture Features of Fire)

  • 트룩 뉘엔;강명수;김철홍;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권6호
    • /
    • pp.21-28
    • /
    • 2013
  • 본 논문은 그레이레벨히스토그램을 이용한 움직임 영역검출, 퍼지 클러스터링을 이용한 칼라 분할, 그레이 레벨 동시발생 행렬을 이용한 특징 추출 및 서포터 벡터 머신을 이용한 화재 분류 등과 같은 다중 이종 알고리즘을 포함하고 있는 효과적인 화재 감지 방법을 제안한다. 제안한 방법은 움직임 영역을 검출하기 위해그레이레벨히스토그램에 기초한 최적의 임계값을 결정하고 난 후, CIE LAB 칼라 공간에서 퍼지 클러스터링을 적용하여 칼라 분할을 수행한다. 이러한 두 단계는 화재의 후보 영역을 기술하는데 도움이 된다. 다음으로 그레이 레벨 동시발생 행렬을 이용하여 화재의 특징을 추출하고, 이러한 특징들은 화재인지 아닌지를 분류하기 위해 서포터 벡터 머신의 입력으로 사용된다. 제안한 방법을 평가하기위해 기존의 두 알고리즘과 화재 검출율 및 오류 화재 검출율에서 비교하였다. 모의실험결과, 제안한 방법은 97.94%의 화재 검출율 및 4.63%의 오류 화재 검출율을 보임으로써 기존의 화재 감지 알고리즘보다 우수성을 보였다.

GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용 (Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis)

  • 이기원;전소희;권병두
    • 대한원격탐사학회지
    • /
    • 제21권2호
    • /
    • pp.121-133
    • /
    • 2005
  • 화소들 사이의 관계를 고려해 Texture 영상을 생성해 내는 것을 의미하는 Texture 영상화는 유용한 영상 분석 방법 중의 하나로 잘 알려져 있고, 대부분의 상업적인 원격 탐사 소프트웨어들은 GLCM이라는 Texture 분석 기능을 제공하고 있다. 본 연구에서는, GLCM 알고리즘에 기반한 Texture 영상화 프로그램이 구현되었고, 추가적으로 GLDV에 기반을 둔 Texture 영상화 모듈 프로그램을 제공한다. 본 프로그램에서는 Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment(ASM), Contrast 등과 같은 GLCN/GLDV의 6가지 Texture 변수에 따라 각각 이에 해당하는 Texture 영상들을 생성해 낸다. GLCM/GLDV Texture 영상 생성에서는 방향 의존성을 고려해야 하는데, 이 프로그램에서는 기본적으로 동-서, 북동-남서, 북-남, 북서-남동 등의 기본적인 방향설정을 제공한다. 또한 이 논문에서 새롭게 구현된 커널내의 모든 방향을 고려해서 평균값을 계산하는 Omni 방향 모드와 커널내의 중심 화소를 정하고_그 주변 화소에 대한 원형 방향을 고려하는 원형방향 모드를 지원한다. 또한 본 연구에서는 여러 가지 변수와 모드에 따라 얻어진 Texture 영상의 분석을 위하여 가상 영상 및 실제 위성 영상들에 의하여 생성된 Texture 영상간의 특징 분석과 상호상관 분석을 수행하였다. Texture 영상합성 응용시에는 영상의 생성시에 적용된 변수들에 대한 이해와 영상간의 상관도를 분석하는 과정이 필요할 것으로 생각된다.

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

GLCM과 육안판독을 이용한 도시경계 추출 (Extracting Urban Boundary Using Grey Level Co-Occurrence Matrix Method and Visual Interpretation)

  • 손홍규;김기홍;유복모;방수남
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.313-316
    • /
    • 2003
  • Growing urban areas modify patterns of local land use and land cover. Land use changes associated with an urban area can be extensive. One way to understand and document land use change and urbanization is to establish benchmark maps compiled from satellite imagery The use of satellite imagery for monitoring urban growth has been widely demonstrated. Multi-temporal LANSAT TM image data has created the potential for monitoring urban change and land cover identification. In this study, for extracting urban boundary GLCM method and visual interpretation were used in CORONA imagery and SPOT imagery.

  • PDF

디지털 맘모그래피에서 미소석회화 검출을 위한 연구 (A Study on Micro-calcification Detection in Digital Mammography)

  • 오휘빈;김영재;김광기;최형석;서영욱;조영호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.112-113
    • /
    • 2008
  • 유방암은 유럽과 미국을 비롯해 전 세계적으로 증가하고 있으며 최근 우리나라에서도 가장 급속하게 늘고 있는 여성암중에 하나이다. 본 연구에서는 먼저 grey level co-occurrence matrix(GLCM)을 적용하여 유방영역을 분할한 후, median filter 를 적용하여 잡음을 제거하였다. 전처리 수행 후, 2차미분 행렬을 이용할여 미소석회화 부분을 강조한 후, 가우시안 정규분포도를 적용하여 미소석회화 후보군을 검출하였다. 검출된 후보군은 8 개의 feature 들을 적용하여 미소석회화를 최종 결정하였다. 본 연구를 통해서 조기 유방암 진단을 위한 발전된 미소석회화 검출 방법을 제안하였다.