• Title/Summary/Keyword: greenhouse production

Search Result 742, Processing Time 0.042 seconds

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector ('탄소발자국' 개념의 발전 과정과 농림 부문에서의 활용 전망)

  • Choi, Sung-Won;Kim, Hakyoung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.358-383
    • /
    • 2015
  • The concept of 'carbon footprint' has been developed as a means of quantifying the specific emissions of the greenhouse gases (GHGs) that cause global warming. Although there are still neither clear definitions of the term nor rules for units or the scope of its estimation, it is broadly accepted that the carbon footprint is the total amount of GHGs, expressed as $CO_2$ equivalents, emitted into the atmosphere directly or indirectly at all processes of the production by an individual or organization. According to the ISO/TS 14067, the carbon footprint of a product is calculated by multiplying the units of activity of processes that emit GHGs by emission factor of the processes, and by summing them up. Based on this, 'carbon labelling' system has been implemented in various ways over the world to provide consumers the opportunities of comparison and choice, and to encourage voluntary activities of producers to reduce GHG emissions. In the agricultural sector, as a judgment basis to help purchaser with ethical consumption, 'low-carbon agricultural and livestock products certification' system is expected to have more utilization value. In this process, the 'cradle to gate' approach (which excludes stages for usage and disposal) is mainly used to set the boundaries of the life cycle assessment for agricultural products. The estimation of carbon footprint for the entire agricultural and forestry sector should take both removals and emissions into account in the "National Greenhouse Gas Inventory Report". The carbon accumulation in the biomass of perennial trees in cropland should be considered also to reduce the total GHG emissions. In order to accomplish this, tower-based flux measurements can be used, which provide a direct quantification of $CO_2$ exchange during the entire life cycle. Carbon footprint information can be combined with other indicators to develop more holistic assessment indicators for sustainable agricultural and forestry ecosystems.

Analysis of Structural Safety of the Welded Pipe Columns Adopted in Paprika Greenhouse (파프리카 재배용 온실에서 용접 파이프 기둥재의 구조적 안전성 검토)

  • Suh, Won-Myung;Choi, Man-Kwon;Im, Jae-Un;Kwon, Sun-Ju;Kim, Hyeon-Tae;Kim, Young-Ju;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.45 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • This study was conducted on greenhouses whose side heights had been raised after the columns of 1-2W basic type greenhouses had been cut and welding with the same-sized pipes. When the wind load or snow load affects restructured pipe greenhouse like this, those parts will be structurally unsafe. To examine this, the bending strength of welded columns were measured through four stages and compared with the pipes in their original condition. Results are as follows. In the case of a bending test on welded joints about steel pipes used for greenhouses, satisfactory results couldn't be drawn because sections of both ends and the loading parts couldn't endure loads and sank regardless of loading methods. Partial problems could be solved by inserting inside pipe(steel bar) at the sections and the loading parts, but it was necessary to devise more satisfactory bending test methods. The strength of welded joints wasn't much different compared with original conditions and demonstrated only slight differences according to the sample production conditions. However, significant incompleteness in the welding process was expected to cause a decisive loss in strength. On the assumption that there were no problems in the welding process or with regard to the inclination of sub materials for columns after connection, it was deemed reasonable to assume that the strength of welded pipes was about 84~90% of the strength of the pipes in their original condition. Considering mid- and long-term strength decline following the onset of rust at joints or welding sections, structural changes in the main sub materials that are used for greenhouses at farmhouses have to be avoided to ensure structural safety, unless these changes are inevitable.

Time-Series Analysis and Estimation of Prospect Emissions and Prospected Reduction of Greenhouse Gas Emissions in Chungbuk (온실가스 배출량 시계열 분석과 전망 배출량 및 감축 감재량 추정 - 충북을 중심으로 -)

  • Jung, Okjin;Moon, Yun Seob;Youn, Daeok;Song, Hyunggyu
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.41-59
    • /
    • 2022
  • In accordance with the enactment of 'the Paris Agreement' in 2015 and 'the Framework Act on Carbon Neutrality and Green Growth for Response to the Climate Crisis' in 2021, each local government has set appropriate reduction target of greenhouse gas to achieve the nationally determined contribution (NDC, the reduction target of 40% compared to 2018) of greenhouse gas (GHG) emissions in 2030. In this study, the current distribution of GHG emissions was analyzed in a time series centered on the Chungbuk region for the period from 1990 to 2018, with the aim of reducing GHG emissions in Chungbuk by 2030 based on the 2030 NDC and scenario. In addition, the prospected reduction by 2030 was estimated considering the projected emissions according to Busines As Usual in order to achieve the target reduction of GHG emissions. Our results showed that GHG emissions in Chungbuk and Korea have been increasing since 1990 owing to population and economic growth. GHG emissions in 2018 in Chungbuk were very low (3.9 %) relative to the national value. Moreover, emissions from fuel combustion, such as cement and lime production, manufacturing and construction industries, and transportation industries, were the main sources. Furthermore, the 2030 target of GHG emission reduction in Chungbuk was set at 40.2% relative to the 2018 value, in accordance with the 2030 NDC and 2050 carbon-zero national scenario. Therefore, when projected emissions were considered, the prospected reduction to achieve the target reduction of GHG emissions was estimated to be 46.8% relative to 2018. The above results highlight the importance of meeting the prospected reduction of GHG emissions through reduction means in each sector to achieve the national and local GHG reduction target. In addition, to achieve the 2030 NDC and 2050 carbon zero, the country and each local government, including Chungbuk, need to estimate projected emissions by year, determine reduction targets and prospect reductions every year, and prepare specific means to reduce GHG emissions.

The Economic Effects of the New and Renewable Energies Sector (신재생에너지 부문의 경제적 파급효과 분석)

  • Lim, Seul-Ye;Park, So-Yeon;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.31-40
    • /
    • 2014
  • The Korean government made the 2nd Energy Basic Plan to achieve 11% of new and renewable energies distribution rate until 2035 as a response to cope with international discussion about greenhouse gas emission reduction. Renewable energies include solar thermal, photovoltaic, bioenergy, wind power, small hydropower, geothermal energy, ocean energy, and waste energy. New energies contain fuel cells, coal gasification and liquefaction, and hydrogen. As public and private investment to enhance the distribution of new and renewable energies, it is necessary to clarify the economic effects of the new and renewable energies sector. To the end, this study attempts to apply an input-output analysis and analyze the economic effects of new and renewable energies sector using 2012 input-output table. Three topics are dealt with. First, production-inducing effect, value-added creation effect, and employment-inducing effect are quantified based on demand-driven model. Second, supply shortage effects are analyzed employing supply-driven model. Lastly, price pervasive effects are investigated applying Leontief price model. The results of this analysis are as follows. First, one won of production or investment in new and renewable energies sector induces 2.1776 won of production and 0.7080 won of value-added. Moreover, the employment-inducing effect of one billion won of production or investment in new and renewable energies sector is estimated to be 9.0337 persons. Second, production shortage cost from one won of supply failure in new and renewable energies sector is calculated to be 1.6314 won, which is not small. Third, the impact of the 10% increase in new and renewable energies rate on the general price level is computed to be 0.0123%, which is small. This information can be utilized in forecasting the economic effects of new and renewable energies sector.

Identification of Nicotine Converter Plants in Burley Tobacco KB9118 (KB108)

  • Jung Suk-Hun;Chung Yun-Hwa;Keum Wan-Soo;Kang Yue-Gyu;Shin Seung-Ku;Jo Chun-Joon;Choi Sang-Ju
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.11-18
    • /
    • 2005
  • The nicotine converter genotypes of burley tobacco (Nicotiana tabacum L.), which convert nicotine to nornicotine, contain a high amount of nornicotine that degrades tobacco quality and smoking taste. Elimination of nicotine converter plants before seed harvesting is required for breeding nicotine low-converter lines and for increasing their seed production. This study aims to develop a rapid and convenient method of identifying nicotine converter plants of burley breeding lines of KB9118(KB108) using thin-layer chromatography (TLC) and isatin coloration method. Out of 223 plants in 10 lines harvested at maturity in 2002, 102 plants ($45\%$) were identified as nicotine converters by TLC of tobacco leaves air-cured. For 16 lines selected as low-converters in 2002, 148 plants grown in the field in 2003 were tested by the isatin coloration method using two detached leaves at the flowering stage thoroughly sprayed with $1\%\;NaHCO_3$ solution and cured in conditioned chambers for the early identification of nicotine to nornicotine conversion. From these samples, 46 plants ($31\%$) in 4 lines were identified as nicotine converters, indicating that the ratio of converters significantly decreased by one time selection. Mean percent conversion of non-screened lines was $14\%$ higher than that of following generation. Therefore in the burley tobacco, a rapid and convenient means of identifying and removing nornicotine converter plants by the isatin coloration method during growth in the greenhouse or field were effective in reducing the converter plants in the following generation.

Effects of Temperature, Photoperiod and Light Intensity on Growth and Flowering in Eustoma grandiflorum

  • Oh, Wook
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.349-355
    • /
    • 2015
  • Lisianthus (Eustoma grandiflorum) is relatively sensitive to temperature and light conditions. For year round production of good quality potted plants and energy saving, it is necessary to understand the growth and flowering response to the combined conditions of these environmental factors. This study was conducted to examine the growth and flowering responses to temperature, photoperiod, and light intensity during the post-seedling stage. 'El Paso Deep Blue' lisianthus plants with four true leaf pairs were grown in growth chambers maintained at average daily temperatures (ADT) of 14, 20, and $26^{\circ}C$ and provided with three photosynthetic photon fluxes [PPF; 100, 200, and $400{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$] for 8 (08:00-16:00) and 16 hours (08:00-24:00) by fluorescent and incandescent lamps, resulting in four daily light integrals (DLI): about 3, 6 (two photoperiods), 12 (two photoperiods), and $24mol{\cdot}m^{-2}{\cdot}d^{-1}$. After treatment for three weeks followed by growth for one week in a greenhouse of $20{\pm}3^{\circ}C$, growth and development were measured. Higher temperature, higher PPF, and longer photoperiod promoted plant growth and flowering; however the impacts of PPF and photoperiod were smaller than those of temperature. As ADT and DLI increased, the number of leaves, number of flowers, lateral shoot length, and shoot dry weight increased. An increase of about $1mol{\cdot}m^{-2}{\cdot}d^{-1}$ DLI could constitute an increase of 0.40 to $0.76^{\circ}C$ ADT depending on these crop characteristics when ADT and DLI are above $20^{\circ}C$ and $12mol{\cdot}m^{-2}{\cdot}d^{-1}$, respectively. Therefore, growers can select a regimen of heating or supplemental lighting without delaying harvesting time or decreasing crop quality.

Comparison of Model-simulated Atmospheric Carbon Dioxide with GOSAT Retrievals

  • Shim, Chang-Sub;Nassar, Ray;Kim, Jhoon
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.263-277
    • /
    • 2011
  • Global atmospheric $CO_2$ distributions were simulated with a chemical transport model (GEOS-Chem) and compared with space-borne observations of $CO_2$ column density by GOSAT from April 2009 to January 2010. The GEOS-Chem model simulated 3-D global atmospheric $CO_2$ at $2^{\circ}{\times}2.5^{\circ}$ horizontal resolution using global $CO_2$ surface sources/sinks as well as 3-D emissions from aviation and the atmospheric oxidation of other carbon species. The seasonal cycle and spatial distribution of GEOS-Chem $CO_2$ columns were generally comparable with GOSAT columns over each continent with a systematic positive bias of ~1.0%. Data from the World Data Center for Greenhouse Gases (WDCGG) from twelve ground stations spanning $90^{\circ}S-82^{\circ}N$ were also compared with the modeled data for the period of 2004-2009 inclusive. The ground-based data show high correlations with the GEOS-Chem simulation ($0.66{\leq}R^2{\leq}0.99$) but the model data have a negative bias of ~1.0%, which is primarily due to the model initial conditions. Together these two comparisons can be used to infer that GOSAT $CO_2$ retrievals underestimate $CO_2$ column concentration by ~2.0%, as demonstrated in recent validation work using other methods. We further estimated individual source/sink contributions to the global atmospheric $CO_2$ budget and trends through 7 tagged $CO_2$ tracers (fossil fuels, ocean exchanges, biomass burning, biofuel burning, net terrestrial exchange, shipping, aviation, and CO oxidation) over 2004-2009. The global $CO_2$ trend over this period (2.1 ppmv/year) has been mainly driven by fossil fuel combustion and cement production (3.2 ppmv/year), reinforcing the fact that rigorous $CO_2$ reductions from human activities are necessary in order to stabilize atmospheric $CO_2$ levels.

A Green House Gas Emission Estimation Based on Gravity Model and Its Elasticity (중력모형을 이용한 온실가스 배출량추정 및 탄력성분석)

  • Im, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.85-93
    • /
    • 2011
  • Many policies, such as transit-oriented development, encouraged use of bicycle and pedestrian, reduction of green house gas (GHG) and etc., have been deployed to support transport sustainability. Although various studies regarding GHG were presented, no one has yet adequately explained the behavior of travelers. This paper proposes a GHG emission model by highlighting its sensitivity, elasticity with regard to such travel cost as travel time, travel fare, and GHG pricing, introduced to reduce the amount of GHG in transportation system. For better estimation of GHG, the proposed model adopts (1) a production-constrained gravity model and (2) the travel distance from the origin and the destination (OD). The gravity model has a merit that it considers travel pattern between OD pairs. The model was tested with an example, and the promising results confirmed its validation and applications.

Temperature Effects on Shoot Growth and Flowering of Kumquat Trees

  • Chang, Yung-Chiung;Chen, Iou-Zen;Lin, Lian-Hsiung;Chang, Yu-Sen
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • This study investigated the effects of temperature on the shoot growth and flowering of potted kumquat [Fortunella margarita ( Lour.) Swingle] trees grown in subtropical conditions of I-Lan County in Taiwan. Temperature treatments included T 25-32, T 17-25, T 22, and T 18. The T 25-32 treatment trees were to the day/night temperatures of $25/18^{\circ}C$ for 2 weeks, followed by 28 weeks at $32/25^{\circ}C$. T 17-25 was exposed for 4 weeks to $17/10^{\circ}C$ followed by 26 weeks at $25/18^{\circ}C$. T 22 and T 18 were exposed at $22/18^{\circ}C$ and $18/13^{\circ}C$, respectively, for the entire duration of the experiment. Control trees were placed in a plastic greenhouse under conditions similar to the natural environment. The kumquat trees exposed to high-temperature environment of $32/25^{\circ}C$ showed more frequent and speedy sprouting of new buds, but induced the earlier termination of shoot elongation growth, resulting in decreased vegetative growth. The temperature treatments lower than $22^{\circ}C$ suppressed the new shoot production but increased the shoot growth period, resulting in increased shoot length and diameter. Temperatures higher than $25/18^{\circ}C$ readily induced flowering, with flowering being advanced under the higher temperature conditions such as $32/25^{\circ}C$. However, flowering was substantially inhibited under temperature conditions lower than $22/18^{\circ}C$, indicating the negative role of relatively lower temperatures on flowering of kumquat trees.