• Title/Summary/Keyword: greenhouse horticulture

Search Result 366, Processing Time 0.041 seconds

Effects of ventilation systems and set point temperature of single-span plastic greenhouse on disease incidence, fruit quality and yield of oriental melon (Cucumis melo L.) (참외재배 단동 비닐하우스의 환기방법과 설정온도가 병발병도,과실 수량 및 품질에 미치는 영향)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Rhee, Han-Cheol;Choi, Gyeong-Lee;Lee, Seong-Chan;Lee, Jung-Sup
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.325-333
    • /
    • 2015
  • The ventilation systems composed three types of side vent (roll-up) 'SV', side vent+roof vent 'SV+RV', and side vent+roof fan 'SV+RF' with 7.5 m spacing, with specific set point temperatures for ventilation: SV ($35^{\circ}C$ open / $33^{\circ}C$ close), SV+RV or SV+RH ($35^{\circ}C$ open/$33^{\circ}C$ close for root ventilation and $37^{\circ}C$ open / $35^{\circ}C$ close for side vent). In the treatment of SV+RV, although the average daily maximum temperature inside the greenhouse temporarily increased by $38-40^{\circ}C$, thermal stress by high temperature did not occur and the disease incidence (%) of powdery mildew and downy mildew on the oriental melon were 25 - 75% lower than in the conventional SV treatment. In the SV treatment, the disease incidence (%) of powdery mildew and downy mildew were 1.4 - 7.7% and 4.2 - 15.9% for 'Deabakkul', and 20.3 - 22.8% and 2.8 - 11.3%, for 'Ildeungkkul'. The yield for one month was higher in the treatment of SV+RV than those in other treatments, with values of 2,105 kg/10a for 'Deabakkul' and 2,537 kg/10a for 'Ildeungkkul'. The simultaneous treatment with side vent and roof vent resulted in 16.2% higher yield (18.1% higher marketable yield) than that in the SV treatment for 'Deabakkul'.

Development of Fog Cooling Control System and Cooling Effect in Greenhouse (온실 포그 냉방 제어시스템 개발 및 냉방효과)

  • Park, Seok Ho;Moon, Jong Pil;Kim, Jin Koo;Kim, Seoung Hee
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.265-276
    • /
    • 2020
  • This study was conducted to provide a basis for raising farm income by increasing the yield and extending the cultivation period by creating an environment where crops can be cultivated normally during high temperatures in summer. The maximum cooling load of the multi-span greenhouse with a floor area of 504 ㎡ was found to be 462,609 W, and keeping the greenhouse under 32℃ without shading the greenhouse at a high temperature, it was necessary to fog spray 471.6 L of water per hour. The automatic fog cooling control device was developed to effectively control the fog device, the flow fan, and the light blocking device constituting the fog cooling system. The fog cooling system showed that the temperature of the greenhouse could be lowered by 6℃ than the outside temperature. The relative humidity of the fog-cooled greenhouse was 40-80% during the day, about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The relative humidity of the fog cooling greenhouse during the day was 40-80%, which was about 20% higher than that of the control greenhouse, and this increase in relative humidity contributed to the growth of cucumbers. The yield of cucumbers in the fog-cooled greenhouse was 1.8 times higher in the single-span greenhouse and two times higher in the multi-span greenhouse compared to the control greenhouse.

Implement of Web-based Remote Monitoring System of Smart Greenhouse (스마트 온실 통합 모니터링 시스템 구축)

  • Dong Eok, Kim;Nou Bog, Park;Sun Jung, Hong;Dong Hyeon, Kang;Young Hoe, Woo;Jong Won, Lee;Yul Kyun, Ahn;Shin Hee, Han
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Growing agricultural products in greenhouses controlled by creating suitable climatic conditions and root zone of crop has been an important research and application subject. Appropriate environmental conditions in greenhouse are necessary for optimum plant growth improved crop yields. This study aimed to establish web-based remote monitoring system which monitors crops growth environment and status of crop on a real-time basis by applying to greenhouses IT technology connecting greenhouse equipment such as temperature sensors, soil sensors, crop sensors and camera. The measuring items were air temperature, relative humidity, solar radiation, CO2 concentration, EC and pH of nutrient solution, medium temperature, EC of medium, water content of medium, leaf temperature, sap flow, stem diameter, fruit diameter, etc. The developed greenhouse monitoring system was composed of the network system, the data collecting device with sensors, and cameras. Remote monitoring system was implemented in a server/client environment. Information on greenhouse environment and crops is stored in a database. Items on growth and environment is extracted from stored information, could be compared and analyzed. So, A integrated monitoring system for smart greenhouse would be use in application practice and understanding the environment and crop growth for smart greenhouse management. sap flow, stem diameter and pant-water relations

Development of Evaluation Indicators of Greenhouse for Tomato Cultivation Using Delphi Survey Method (델파이 설문조사를 통한 토마토 재배시설 평가지표 개발)

  • Yu, In Ho;Cho, Myeong Whan;Lee, Eung Ho;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.466-477
    • /
    • 2012
  • This study aimed to develop the comprehensive indicators which can be used for evaluating greenhouse for tomato cultivation. To achieve this aim, the study developed the evaluation indicators composed of evaluation items, grades and criteria by extracting preliminary evaluation items through analyzing the related papers and preceding studies, and conducting Delphi survey on an expert group. During the three surveys, the questions of closed-ended type were given to a panel of 100 experts - professors related to tomato cultivation and facilities, researchers and farmers (practical users). As a result, the finally established evaluation indicators consist of 4 categories and 39 specific evaluation items. The 4 categories are the structural factor of greenhouse, equipment factor of greenhouse, cultivation factor, and infrastructure factor. These factors consist of specific evaluation items of 9, 15, 7 and 8, respectively. In addition, on 39 specific evaluation items, weighted values were calculated and grades and criteria were established by collecting opinions of the experts. The newly developed evaluation indicators through this study will play an important role in developing new greenhouse models, considering things that should be complemented preferentially regarding in-use facilities, and improving the efficiency of projects supported by the government.

Yield Increase and Energy Saving Effect on Plastic Greenhouse Covered with Polyolefin Film (PO필름 피복 온실의 수량 증대 및 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kim, Jin Gu;Lee, Jae Han;Kang, Youn Koo;Lim, Mi Young;Kim, Hye Min
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.428-439
    • /
    • 2020
  • This study was carried out to investigate the effect of PO film on the increase of crop yield and energy saving through PO and PE film greenhouse application and comparison test. As a experimental greenhouse, two single span greenhouses (1-1 W) and two double span greenhouses (1-2 W) were used. During winter season, PO film (0.15 mm outer layer, 0.10mm inner layer) was used as a covering material of greenhouse in double layers for double-span (B15) and single-span(B21), and PE film used for double-span (B15), and single-span (B23) as a control. The experimental vegetable was tomato(Solanum lycopersicum L.) cultivated in soil and the cultivar of that was 'Happiness'. That was cultivated from December 3, 2019 to April 30, 2020. The temperature at night inside the greenhouse was maintained at 15℃, and the side and roof windows were opened to maintain 23 ~ 24℃ during the day. As a result, this study showed that the yield in single-span greenhouse(B21) covered with a PO film increased 20% and that in double-span greenhouse (B16) increased by 9% compared to the greenhouse covered with a PE film (B23, B15). Fuel consumption of the single-span greenhouse (B21) with the cover of PO film was reduced by 12.4% and that of double-span greenhouse was done by 11.5% compared to that of the PE film greenhouse (B23, B15) without any difference between them in growing state.

Effect of Red or Blue Resin Added to Greenhouse Covering Films on Growth of Tomato and Pepper (적색 및 청색 수지 첨가 피복재가 토마토와 고추의 생육에 미치는 영향)

  • Kwon, Joon-Kook;Cho, Myeomg-Whan;Kang, Yun-Im;Park, Kyoung-Sub;Woo, J.G.
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.284-289
    • /
    • 2010
  • Spectral irradiance of greenhouse covering films that three resins (red, blue, red plus blue) were added to get higher utilization efficiency of sunlight were compared to the normal film in this study. Growth and yield of tomato and pepper grown under the films were also investigated. Transmittance of PAR (photosynthetically active radiation, 400~700 nm) and sunlight (300~1,100 nm) of red or blue resin-added films increased by 5 to 6% and 0.5 to 1.0%, respectively. As compared to the normal film, fruit yield and soluble solid content of tomato and pepper grown under red plus blue resin-added film increased by 15 to 20% and by $0.5^{\circ}Bx$.

Effects of Pipe Network Composition and Length on Power Plant Waste Heat Utilization System Performance for Large-scale Horticulture Facilities (발전소 온배수를 적용한 대규모 시설원예단지용 난방시스템의 열원이송 배관 재질 및 거리에 따른 성능평가)

  • Lee, Keum ho;Lee, Jae Ho;Lee, Kwang Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.4
    • /
    • pp.14-21
    • /
    • 2015
  • Korean government plans to establish large-scale horticulture facility complexes using reclaimed land in order to improve the national competitiveness of agriculture at the government level. One of the most significant problems arising from the establishment of those large-scale horticulture facilities is that these facilities still largely depend on a fossil fuel and they require 24 h a day heating during the winter season in order to provide the necessary breeding conditions for greenhouse crops. These facilities show large energy consumption due to the use of coverings with large heat transmission coefficients such as vinyl and glass during heating in the winter season. This study investigated the applicability of waste heat from power plant for large-scale horticulture facilities by evaluating the waste heat water temperature, heat loss and energy saving performance as a function of distance between power plant and greenhouse. As a result, utilizing power plant waste heat can reduce the energy consumption by around 85% compared to the conventional gas boiler, regardless of the distance between power plant and greenhouse.