• Title/Summary/Keyword: green production

Search Result 1,549, Processing Time 0.027 seconds

Dark Hydrogen Production by a Green Microalga, Chlamydomonas reinhardtii UTEX 90

  • SIM SANG JUN;GONG GYEONG TAEK;KIM MI SUN;PARK TAl HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1159-1163
    • /
    • 2005
  • The production of hydrogen by Chlamydomonas reinhardtii UTEX 90, a marine green alga, was performed under dark fermentation. The effects of initial nitrogen and phosphorus concentration on the cell growth and the production of hydrogen and organic substances were investigated. In the growth stage, the maximum dry cell weight (DCW) was 3 g/l when the initial ammonium concentration was 15 mM. In the dark fermentation, the maximum hydrogen production was $3.5\;{\mu}mol/\;mg$ DCW when the initial nitrogen concentration was 7.5 mM. The nitrogen concentration had a greater effect on organic compound and hydrogen production than the phosphorus concentration during the dark fermentation. An investigation of the duration of dark fermentation showed that, at least until three days, dark fermentation should be prolonged for maximum hydrogen production.

Study on Development of Steam Curing Method for In-situ production of Precast Concrete members (프리캐스트 콘크리트 부재의 현장생산용 증기 양생 방법 개발 연구)

  • Sung, Soojin;Lim, Chaeyeon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.71-72
    • /
    • 2014
  • Green Frame is a building frame system to construct a column-beam structure using composite precast concrete members. To reduce the cost of producing precast concrete, in-situ production of members is required. However, when the structural members are produced on site, it needs a large space for production. So, "Just-In-Time" production method should be adopted. For Just-In-Time to be realized, the early strength of members should be ensured for them to be transported. Thus, steam curing to secure the early strength is applied in Green Frame. Yet, a large-scale steam curing system is not possible for in-situ production of precast concrete. A smaller steam curing system is needed. In this regard, the study is aimed to develop a new steam curing method applicable to the in-situ production of precast concrete.

  • PDF

Plant Growth and Morphogenesis Control in Transplant Production System using Light-emitting Diodes(LEDs) as Artificial Light Source - Spectral Characteristics and Light Intensity of LEDs - (인공광원으로 발광다이오우드를 이용한 묘생산 시스템에서 식물생장 및 형태형성 제어 - 발광다이오우드의 분광 특성 및 광강도 -)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 1999
  • Because of their small mass, volume, solid state construction and long life, light-emitting diodes(LEDs) hold promises as a lighting source for intensive plant production system. Spectral characteristics and light intensity of LEDs were tested to investigate their feasibility as artificial lighting sources for growth and morphogenesis control in transplant production system. Blue, green, and red LEDs had a peak-emission wavelength at 442nm, 522nm, and 673nm, respectively. Their half width defined as the difference between upper and lower wavelength in the intensity equivalent to 50% of the maximum intensity showed 26nm, 41nm, and 74nm, respectively. Photosynthetic photon flux(PPE) at the distance of 9cm under the LEDs array was measured as $235{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for red, $109{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for green, and $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for blue LEDs. At the same distance, green LEDs had the illuminance of 13,0001x, nine to ten times higher than those of red and blue LEDs. Red, green, and blue LEDs at a distance of 9cm had the irradiance of $46W{\cdot}m^{-2},\;19W{\cdot}m^{-2},\;8W{\cdot}m^{-2}$, respectively. Light intensity of blue, green, and red LEDs increased linearly in proportion to the magnitude of the current applied to the operating circuit. Thus the light intensity of LEDs was controlled by the applied current in operating circuit.

  • PDF

Effects of Green Tea Polyphenols and Fructo-oligosaccharides in Semi-purified Diets on Broilers' Performance and Caecal Microflora and Their Metabolites

  • Cao, B.H.;Karasawa, Y.;Guo, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.85-89
    • /
    • 2005
  • This study was conducted to examine the effects of green tea polyphenols (GTP) and fructo-oligosaccharides (FOS) supplement on performance, counts of caecal microflora and its metabolites production. In female broiler chickens fed on semi-purified diets from 28 to 42 d of age, dietary green tea polyphenols (GTP) and fructo-oligosaccharides (FOS) significantly reduced mortality (p<0.05). Dietary GTP significantly decreased the total count of caecal microflora, each colonic population count and caecal flora metabolites contents when compared to other groups (p<0.05). Dietary FOS did not influence the total count of caecal flora but it selectively increased Bifidobacteri and Eubacteria counts (p<0.05) and decreased the count of other microflora and concentrations of caecal phenols and indole (p<0.0.5). These results suggest that GTP and FOS in semi-purified diets can decrease mortality and change the caecal colonic flora population, but GTP shows antibiotic-like effects of non-selectively decreasing all colonic flora and then metabolites, and FOS acts selectively by increasing profitable microflora and decreasing production of caecal microflora metabolites besides volatile fatty acids.

The Green Cement for 3D Printing in the Construction Industry

  • Park, Joochan;Jung, Euntae;Jang, Changsun;Oh, Chaewoon;Shin, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.50-56
    • /
    • 2020
  • Currently, 3D printing technology is a new revolutionary additive manufacturing process that can be used for making three dimensional solid objects from digital films. In 2019, this 3D printing technology spreading vigorously in production parts (57%), bridge production (39%), tooling, fixtures, jigs (37%), repair, and maintenance (38%). The applications of 3D printing are expanding to the defense, aerospace, medical field, and automobile industry. The raw materials are playing a key role in 3D printing. Various additive materials such as plastics, polymers, resins, steel, and metals are used for 3D printing to create a variety of designs. The main advantage of the green cement for 3D printing is to enhance the mechanical properties, and durability to meet the high-quality material using in construction. There are several advantages with 3D printing is a limited waste generation, eco-friendly process, economy, 20 times faster, and less time-consuming. This research article reveals that the role of green cement as an additive material for 3D printing.

A New Early Flowering, Spray Chrysanthemum Cultivar for Cut Flower, "Green witch" with Pompon Type and Green Petals (조기개화성의 녹색 폼폰형 절화용 스프레이국화 "그린위치" 육성)

  • Hwang, Ju Chean;Chin, Young Don;Kim, Jin Ki;Kim, Su Kyeong
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.529-533
    • /
    • 2009
  • A new spray chrysanthemum (Dendranthema grandiflorum) cultivar "Green Witch" was developed from a cross between 'S04161' and 'S04109' by selection of seedlings and lines at the Flower Research Institute, Gyeongnam Agricultural Research and Extension Services (ARES) from 2004 to 2008. Its characteristics were investigated three times from 2006 to 2008 under condition of forcing culture in spring and retarding culture in autumn. The natural flowering time of "Green Witch" was October 19th, and year-round production was possible by day length treatment. Its capitulum was 3.2cm in diameter, and had 15.9 head per stem in autumn. Its ray floret was green central zone. To flower in the short day condition, for "Green Witch" was about 44 days in spring, and "Green Witch" showed the vase life of 25.3 days in autumn. This cultivar was registered for a commercialization in 2008.

Effect of Cutting Height on the Winter Survival, Early Spring Yield and Energy Production of Italian ryegrass II. Comparison of chemical composition, energy production and relationship of yields (월동전 예취 높이가 북방형목초의 월동성 , 이른봄 수량 및 양분생산에 미치는 영향 II. 초종별 예취 높이에 따른 일반성분 함량변화 , Energy 생산성 및 상관관계)

  • 신재순;박근제;차동호;이필상;윤익석
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.1
    • /
    • pp.20-25
    • /
    • 1988
  • This experiment was conducted to find out the effects of the different cutting height on the chemical composition, energy production and relation of yields of Italian ryegrass, tall fescue and perennial ryegrass swards. It was carried out on the experimental field of Livestock Experiment Station, in Suweon, from Sept. 1986 to May 1987. The results obtained are summarized as follows: 1. Chemical composition and Van Soest fiber contents were slightly different among grasses. But were not same trend with cutting heights. At the late vegetative stage, crude protein and crude fiber content were much more in tall fescue, Ash in perennial ryegrass, E.E. and NFE in Italian ryegrass respectively. NDF, ADF, Hemicellulose, Lignin, Cellulose and Silica contents were much more in tall fescue than the others. 2. DM, DCP, TDN, StE, ME and NEL productions were appeared to high in line with Italian ryegrass, perennial ryegrass and tall fescue. In addition 6 cm cutting height was the most production in Italian ryegrass, 15 cm cutting height was the most production in perennial ryegrass and tall fescue. 3. The much more content of crude protein, the less nonstructural carbohydrate content. The less content of NDF, the much more nonstructural carbohydrate content. Green and dry matter yield before wintering were not influence the green and dry matter yield of the late vegetative stage, but green yield before wintering influenced total green yield.

  • PDF

A comparison of anti-inflammatory activities of green tea and grapefruit seed extract with those of microencapsulated extracts (미세캡슐화한 녹차 및 자몽종자 추출물이 Murine RAW 264.7 대식세포주의 항염증에 미치는 영향 비교)

  • Jun, Yoon Kyung;Kim, Myung Hwan;Seong, Pil Nam;Chang, Moon-Jeong
    • Journal of Nutrition and Health
    • /
    • v.45 no.5
    • /
    • pp.443-451
    • /
    • 2012
  • We compared the effects of grapefruit seed extract (GFSE), green tea extract (GT) and their microencapsulated extract on anti-inflammatory activities in murine RAW 264.7 macrophages cell line. In order to protect the bioactive compounds in the extracts, they were microencapsulated with maltodextrin and $H_2O$. Nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), inducible nitric oxide synthase (iNOS) protein expression and thiobarbiturate reactive substances (TBARS) were analyzed in LPS activated RAW 264.7 macrophages. The green tea extract at the range of $100-600{\mu}g/mL$ inhibited NO, PGE2 production and iNOS protein expression without cytotoxicity in a dose-dependent manner. Grapefruit seed extract had strong inhibitory effects on NO and PGE production and iNOS protein expression at the range of $5-20{\mu}g/mL$ without cytotoxicity. Microencapsulation of green tea extract had further inhibitory effects on NO and PGE2 production and on iNOS protein expression, whereas microencapsulated GFSE did not show any further inhibitory effects on these parameters. Taken together, our results suggest that GSFE might be a promising candidate for preventing inflammation related diseases, such as cardiovascular disease, cancer or diabetes, and the microencapsulation of green tea extract could improve its bioactivity.

Ethanol Production From Seaweeds by Acid-Hydolysis and Fermentation (산 가수분해와 발효에 의한 해조류로부터 에탄올 생산)

  • Na, Choon-Ki;Song, Myoung-Ki;Son, Chang-In
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.6-16
    • /
    • 2011
  • In order to study the utilization of seaweeds as an alternative renewable feedstock for bioethanol production, their properties of hydrolysis and fermentation were investigated. The seaweeds were well hydrolyzed with diluted sulfuric acid. The weight loss of seaweeds reached 75-90%, but only 12-51% of them was converted into reducing sugars after the acid-hydrolysis at $130^{\circ}C$ for 4-6h. The yield of reducing sugars increased with increasing the hydrolysis time up to 4h and then decreased thereafter. In contrast, the ethanol yield from the hydrolysates increased with hydrolysis time except for green seaweeds maximizing at 4h. Optimal fermentation time by Saccharomyces cerevisiae (ATCC 24858) varied with seaweeds; 48h for green seaweeds, 96h for brown and red seaweeds. The ethanol yield from the hydrolysate reached 138${\pm}$37mg/g-dry for green seaweeds, 258${\pm}$29mg/g-dry for brown seaweeds, and 343${\pm}$53mg/g-dry for red seaweeds, which correspond to approximately 1.5-4.0 times more than the theoretical yield from total reducing sugars in the hydrolysates. The results obtained indicate clearly that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. Considering the productivity and production cost of each seaweed, brown seaweeds such as Laminaria japonica and Undaria pinnatifida seem to be a promissing feedstock for bioethanol production.

DMfree®(Green Tea Extract) Inhibits IL-6 of Mycobacterium leprae Infected Mesenchymal Stem Cells (디엠프리(녹차추출물)에 의한 나균 감염 중간엽줄기세포의 IL-6 생산 억제)

  • Park, Ran-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.4
    • /
    • pp.695-701
    • /
    • 2015
  • Previous reports revealed that DMfree (green tea extract) inhibited expression of the IL-6 gene in Mycobacterium lepraeinfected MSCs (mesenchymal stem cells). This study aimed to measure IL-6, $IL-1{\beta}$, $TNF-{\alpha}$ and PGE2 production in M. leprae-infected MSCs using ELISA. To confirm the effect of DMfree on IL-6 and signal transduction, a western blotting test was performed. DMfree inhibited the expression of IL-6 in the MSCs and the heterodimer of STAT3, which also affects the expression of multiple genes. Though DMfree pre-treatment of control MSCs produced a baseline level of IL-6, it significantly inhibited the production of IL-6 in M. leprae-infected MSCs. There was no significant difference in IL-6 production between 1 and 7 day treatment groups. M. leprae-infected MSCs produced more $IL-1{\beta}$, $TNF-{\alpha}$ and PGE2, but DMfree could not inhibit their production at a physiological concentration. This is different from other reports that used higher concentration of EGCG treatment, resulting in significant inhibition of the cytokines. The inhibition appears to be related to the concentration of EGCG. These results indicate that DMfree can alleviate inflammation involving IL-6.