• Title/Summary/Keyword: green material

Search Result 1,398, Processing Time 0.025 seconds

Design and Fabrication Process Effects on Electrical Properties in High Capacitance Multilayer Ceramic Capacitor (고용량 적층 세라믹 커패시터에서 설계 및 제조공정에 따른 전기적 특성 평가)

  • Yoon, Jung-Rag;Woo, Byong-Chul;Lee, Heun-Young;Lee, Serk-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.2
    • /
    • pp.118-123
    • /
    • 2007
  • The purpose of this work was to investigate the design and fabrication process effects on electrical properties in high capacitance multilayer ceramic capacitor (MLCC) with nickel electrode. Dielectric breakdown voltage and insulation resistance value were decreased with increasing stack layer number, but dielectric constant and capacitance were increased. With increasing green sheet thickness, dielectric breakdown voltage, C-V and I-V properties were also increased. The major reasons of the effects were thought to be the defects generated extrinsically during fabrication process and interfacial reactions formed between nickel electrode and dielectric layer. These investigations clearly showed the influence of both green sheet thick ness and stack layer number on the electrical properties in fabricating the MLCC.

New green fluorescent materials for OLEDs

  • Lee, Chil-Won;Lee, Eun-Jung;Kim, Joon-Woo;Yun, Jong-Hyeok;Lee, Jun-Yeob;Gong, Myoung-Seon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.628-631
    • /
    • 2007
  • We developed new green emitting materials based on the spiro moieties. The introduction of a spiro linkage into the structure of DJGH series lead to a reduction in crystallization tendency and an increase in glass transition temperature. they showed much better emitting efficiency and color purity than commercial host material $Alq_3$.

  • PDF

Preparation and Luminescent Properties of Zn2SiO4:Mn,Al Green Phosphors (Zn2SiO4:Mn,Al 녹색 형광체의 제조와 발광특성)

  • Lee, Ji-Young;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.363-366
    • /
    • 2007
  • [ $Zn_2SiO_4:Mn$ ] green phosphors doped with $NH_4Cl$ and Al for PDP were synthesized by solid state reaction method. The luminescence of 532 nm in $Zn_2SiO_4:Mn$ phosphors was associated with $^4T_1{\to}^6A_1$ transition. Photoluminescence intensity of $Zn_2SiO_4:Mn$ doped with $NH_4Cl$ 15 mol% increased about two times as compared with that of $NH_4Cl$ non-doped sample. The color of the emission of Al-doped $Zn_2SiO_4:Mn$ phosphors changed to yellowish green.

Preparation and Luminescent Properties of Zn2SiO4:Mn, Ga Phosphors (Zn2SiO\4:Mn, Ga 형광체의 제조와 발광특성)

  • Lee, Ji-Young;Yu, Yun-Sik;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.158-162
    • /
    • 2009
  • $Zn_2SiO_4$:Mn green phosphors doped with Ga for PDP were synthesized by solid state reaction method. Photoluminescence measurements showed a new emission peak at around 600 nm for $Zn_2SiO_4$:Mn phosphors doped with Ga. Also, the luminescent color with doping $Ga^{3+}$ in the $Zn_2SiO_4$:Mn phosphors changed to green from yellowish green. Consequently, the new peak and charge of the luminescent color in the $Zn_2SiO_4$:Mn, Ga phosphors were attributed to $^2E{\rightarrow}^6A_2$ transition of $Mn^{4+}$.

Ecological Green Roofs in Germany

  • Kohler, Manfred
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.4
    • /
    • pp.8-16
    • /
    • 2004
  • The industrialization of central Europe more than 100 ago marked the beginning of densely concentrated buildings in quickly growing cities. A cheap type of roofing material of that time was tar. But it was dangerous because it was high inflammable. Then some roofer had a splendid idea. They used sandy material as a final layer atop the impermeable tar layer. These roofs were much more fire resistant than the typical roofs. In this sandy layer some plant species began to grow spontaneously. This was the beginning of the green roof history of modern Europe. A number of these green roofs survived both world wars. In the early 80's in Berlin alone, 50 such buildings existed and they continued to be waterproof until the present day. Since the 1992 Earth Summit of 1992 in Rio de Janeiro(http://www.johannesburgsummit.org/html/basic_info/unced.html) the term "sustainable development" became of central interest of urban designers. In city regions green roofs had become synonymous with this term. With a small investment, long-lasting roofs can be created. Further back in history, more exciting examples of green roofs can be found. The hanging gardens of antiquity are well-known. There are also green roofs built as insulation against cold and heat all over the world. For over 20 years, roof greening in central Europe has been closely examined for various reasons. Roof greening touches several different disciplines. Of primary interest is the durability of the roofs. But ecologists are also interested in green roofs, for instance in biodiversity research. The beneficial effect of greening on water proofing was also proven. For some time, the issue of fire protection was investigated. According to tests, green roofs received a harsh careful rating. Their fire protective property is considered similar to that of tile roofs. Another recent impulse for the green roof movement in Germany has come from the evident improvement of storm water retention and the reduced burden on the sewer system. The question of whether and how much energy green roofs can save has become an urgent question. The state of the research and also various open questions from a central European point of view will be discussed in the context of international collaboration. Apart from academic considerations, those who involve themselves in this issue take a predominantly positive view of the numerous existing green roofs in Germany. In some cities, green roofs are the typical construction technique for new buildings. A few outstanding examples will conclude this review. In Germany, about 20 companies, some of which operate internationally, specialize in green roof consulting. Learning from each other in an open-ended way with respect to different construction techniques and applications in various climatic regions can only be accomplished through such international collaboration as is taking place here.

The Research on the Indoor Temperature and Humidity Control of Green Roof by Solid Growing Medium in Summer (고형화된 식생기반재를 활용한 여름철 옥상녹화의 실내 온·습도 조절효과 연구)

  • Lee, Hyun-Jung;Yeom, Dongwoo;Lee, Kyu-In
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Purpose: Various studies on the soil-based green roof systems have been conducted, and a lot of green roof systems were developed. A growing medium board is one of them which was developed for better application and maintenance, however the effect and performance of this material need to be verified. On this background, the purpose of this study is to prove cooling load reduction of green roof by monitoring experiment on the full-scale mock-ups. Method: To do this, Solid growing medium boards were installed on the mock-ups, and indoor temperature and humidity were monitored and analyzed. Result: As a results, the green roof with solid growing medium board were verified effective for controlling indoor temperature in summer.

Oxidative DNA damage by Ethanol Extract of Green Tea

  • Park You-Gyoung;Kwon Hoonjeong
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.71-75
    • /
    • 2005
  • Green tea and their major constituents such as catechins are famous materials for their anti-oxidative and anti-carcinogenic activity, but many compounds with reducing power can promote the oxidation in their oxidized form or in the presence of metal ion. We investigated the pro-oxidative effect of the ethanol extract equivalent up to 30mg of dried weight of green tea leaves in four in vitro systems which could be used for detecting DNA damage. Although ethanol extract of green tea did not show significant mutagenicity in Salmonella typhimurium TA102, which is sensitive strain to oxidative stress, it degraded deoxyribose extensively in the presence of $FeCl_3-EDTA$ complex, promoted 8-oxoguanine formation in the live bacteria cell, Salmonella typhimurium TAI04, and cleaved super coiled DNA strand with the help of copper ion. It suggested that green tea, famous anti-oxidative material, can be pro-oxidant according to the condition of extraction or metal existence.

  • PDF

Electrical characteristics of RGB OLED (RGB OLED의 전기적 특성 분석)

  • Yoo, Ji-Hong;Han, Jay-Ho;Choi, Byoung-Deog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.281-281
    • /
    • 2009
  • Electrical analysis of red, green and blue (RGB) organic light emitting diode (OLED), which were measured at various temperatures from 230K to 370K by steps of 20K, were investigated using current-voltage(I-V) characteristics. Ideality factor and series resistance were obtained from the thermionic emission theory. Experimental results showed that the ideality factors were 2.12 for red, 3.80 for green, and 6.03 for blue OLED at 290K, respectively. The series resistance were 1960, 2190, 2630$\Omega$ for red, green and blue OLED at the same temperature. It was found that the OLED ideality factors were much higher than near unity for well-behaved silicon diodes, because of the organic material and multi-layer fabrication diode. In addition, the series resistance was near 2k$\Omega$ range. More researches are required to reduce both ideality factors and series resistance to increase the efficiency of OLEDs.

  • PDF

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.