• Title/Summary/Keyword: green ion

Search Result 337, Processing Time 0.023 seconds

Characterization of Azomonas agilis PY101, a Cadmium-Resistant Strain Isolated from Anyang Stream

  • You, Kyung-Man;Lee, Ji-Hyun;Kim, Jeong-Kook;Hah, Nam-Ju;Lee, Yung-Nok;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.289-293
    • /
    • 1996
  • A cadimium-resistant strain isolated from Anyang stream, Azomonas agilis PY101 exhibited strong resistance to 1000 ppm of cadmium ion $(Cd^{2+})$. A agilis PY101 also exhibited resistance to various antibiotics, such as amoxicillin, amplicillin, bacitracin, cefazolin, erythromycin, penicillin, tetracycline, and vancomycin. In the presence of $Cd^{2+}$, the growth of A. agilis PY101 started after an extended lag phase and produced a green-fluorescent pigment induced by cadmium. The dramatic decrease (approximately 400ppm) of concentration of $cd^{2+}$ in the culture medium during the growth phase of A. agilis PY101 was confirmed by the inductively coupled plasma-atomic emission spectrophotometer. Transmission electron microscopic analysis revealed that A. agilis PY 101 actively accumulated $Cd^{2+}$ in the cytoplasm.

  • PDF

Research of Energy Efficiency for Power Plant Performance Improvement (발전성능 향상을 위한 에너지 효율 연구)

  • Lee, Jae-Keun;Moon, Jeon-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.3
    • /
    • pp.220-226
    • /
    • 2010
  • The heat transfer performance improvement in closed cooling water system of an electric power generation can be achieved by a corrosion control using corrosion inhibitors. The effect of trisodium phosphate and sodium nitrite upon carbon steel at various $Cl^{-1}$ ion containing water concentrations was examined by an integrated corrosion monitoring system. Nitrite was found to be the most effective inhibitor among tested inhibitors for carbon steel. The inhibiting process is considered as adsorption of nitrite ions in oxide layer which form a passive film on the carbon steel surface.

Modified-Polyol Synthesis of Nanocrystalline $LaPO_4:Ce^{3+}$, $Tb^{3+}$ Phosphors for Transparent Display

  • Song, Woo-Seuk;Byun, Ho-June;Yang, Hee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1290-1292
    • /
    • 2009
  • Modified-polyol protocol was utilized for synthesis of green-emitting ($^5D_4-^7F_j$ transitions of $Tb^{3+}$ ion) nanocrystalline $LaPO_4:Ce^{3+}$, $Tb^{3+}$ phosphors. Experimental parameters including chemical composition and annealing temperature were optimized to produce highly efficient, uniformly sized nanophosphors. Spin-deposited layer of $LaPO_4:Ce^{3+}$, $Tb^{3+}$ nanophosphors on glass substrate exhibited a transmittance of more than 80 %, indicating their efficacy for transparent display.

  • PDF

Atomic Layer Deposition of HfO2 Films on Ge

  • Cho, Young Joon;Chang, Hyo Sik
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.40-43
    • /
    • 2014
  • We investigated the growth characteristics and interfacial properties of $HfO_2$ films deposited on Ge substrate through atomic layer deposited (ALD) by using an in-situ medium energy ion scattering analysis. The growth kinetics of $HfO_2$ grown on a $GeO_2/Ge$ substrate through ALD is similar to that grown on an $SiO_2/Si$ substrate. However, the incubation period of $HfO_2$ deposition on Ge is shorter than that on Si. The $HfO_2$ grown on the GeO/Ge substrate shows a significant diffusion of Hf atoms into the substrate interface and GeO volatilization after annealing at $700^{\circ}C$. The presence of low-quality Ge oxide or suboxide may degrade the electrical performance of device.

The Luminescence Properties of YAG:$Tb^{3+}$ Phosphor Prepared by Hydrothermal Synthesis (YAG:$Tb^{3+}$ 형광체 분말의 수열합성과 발광 특성)

  • 김상문;지성훈;구자인;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.745-750
    • /
    • 2000
  • YAG:Tb3+ as green phosphor were studied for the development of low voltage FED phosphor prepared by hydrothermal synthesis. We changed the concentration of luminescence center ion Tb3+ in hydrothermal reaction of which conditions were at 8M NH4OH as mineralizer, at 35$0^{\circ}C$ for 12hrs. As results, we could finally get the YAG:Tb3+ (Y3-xTbxAl5O12) powder of which particle size was about 0.2~1.0${\mu}{\textrm}{m}$. The excitation spectra and the green emitted spectra of YAG:Tb3+ phosphor powder were observed. When we doped 0.25 mol Tb to YAG, we could observe the maximum cathodoluminescence from YAG:Tb3+ phosphor and the chromaticity coordinate of the phosphor was shown x=0.35, y=0.56 in CIE1931 diagram.

  • PDF

Formation of surface mediated iron colloids during U(VI) and nZVI interaction

  • Shin, Youngho;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.167-177
    • /
    • 2013
  • We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.

Fabrication of Carbon Microcapsules Containing Silicon Nanoparticles-Carbon Nanotubes Nanocomposite for Anode in Lithium Ion Battery

  • Bae, Joon-Won;Park, Jong-Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3025-3032
    • /
    • 2012
  • Carbon microcapsules containing silicon nanoparticles (Si NPs)-carbon nanotubes (CNTs) nanocomposite (Si-CNT@C) have been fabricated by a two step polymerization method. Silicon nanoparticles-carbon nanotubes (Si-CNT) nanohybrids were prepared with a wet-type beadsmill method. A polymer, which is easily removable by a thermal treatment (intermediate polymer) was polymerized on the outer surfaces of Si-CNT nanocomposites. Subsequently, another polymer, which can be carbonized by thermal heating (carbon precursor polymer) was incorporated onto the surfaces of pre-existing polymer layer. In this way, polymer precursor spheres containing Si-CNT nanohybrids were produced using a two step polymerization. The intermediate polymer must disappear during carbonization resulting in the formation of an internal free space. The carbon precursor polymer should transform to carbon shell to encapsulate remaining Si-CNT nanocomposites. Therefore, hollow carbon microcapsules containing Si-CNT nanocomposites could be obtained (Si-CNT@C). The successful fabrication was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These final materials were employed for anode performance improvement in lithium ion battery. The cyclic performances of these Si-CNT@C microcapsules were measured with a lithium battery half cell tests.

Simultaneous Determination of Tar Color Additives in Cold Syrups by Ion Pair-high Performance Liquid Chromatography (이온쌍-고성능 액체크로마토그래피에 의한 감기약 시럽에서 타르색소 첨가물의 동시분석)

  • Jin, Jing-Yu;Huang, Hu;Lee, Beom-Gyu;Lee, Won-Jae
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.459-465
    • /
    • 2010
  • A simple and efficient analytical method for the simultaneous determination of seven tar color additives was developed using ion pair high performance liquid chromatography. The conditions for HPLC analysis were as follows: column, ${\mu}$-Bondapak C18 (10 ${\mu}m$, 300 ${\times}$ 3.9 mm i.d.); gradient mobile phase, 0.025 mol/L ammonium acetate (containing 0.01 mol/L tetrabutylammonium bromide)-acetonitrile-methanol (65:25:10) as a mobile for fraction A and 0.025 mol/L ammonium acetate (containing 0.01 mol/L tetrabutylammonium bromide)-acetonitrilemethanol (40:50:10) as a mobile for fraction B; flow rate, 1.0 mL/ min; detection wavelength, 254/520/620 nm. We could attain to the detection limits as 0.01~0.05 ${\mu}$g/mL (254 nm) and 0.005~0.01 ${\mu}$g/mL (520 nm) for six red tar color additives, and 0.05 ${\mu}$g/mL (254 nm) and 0.002 ${\mu}$g/mL (620 nm) for Fast green FCF. This analytical method was applicable to determine the tar color additives contained in several commercial cold syrups.

Exploring the nutritional biochemical profiles and biological functions in the green microalga Chlorella fusca

  • Young Min Lee;Youn-Sig Kwak;Yong Bok Lee;Eun Young Seo;Jin Hwan Lee
    • ALGAE
    • /
    • v.39 no.3
    • /
    • pp.187-205
    • /
    • 2024
  • Chlorella species of microalgae are utilized in the crop and food industries. The aim of this research was to investigate the metabolite profiles of Chlorella fusca for the first time and evaluate its biological properties. The two ion modes of UPLC-Q-TOF-MS/MS were used to identify a total of 62 components in the methanol extract of C. fusca, with 26 in the negative and 36 in the positive ion mode, including 10 identical ingredients. Fatty acids (negative mode) and combinations of chlorophyll and fatty acids (positive mode) were the most prevalent chemical structures, constituting over 80 and 70% of the total metabolites, respectively, followed by chlorophyll, polar lipids, carotenoids, and fatty alcohols. Moreover, this extract exhibited potent antioxidant and anti-aging benefits in decreasing order of potency at a concentration of 200 ㎍ mL-1: tyrosinase inhibition (100%), ABTS radical scavenging (90%), elastase inhibition (88%), and DPPH radical scavenging (34%). Notably, this extract protected the mobility of DNA fragments up to 5 ㎍ mL-1 (26%), with potential effects (> 60% at 200 ㎍ mL-1). These findings suggest that C. fusca may be a promising candidate for applications related to its biological functions, owing to the high accumulation of fatty acids and chlorophyll derivatives.

Performance Enhancement of Ion-Exchange Membranes Using Nanomaterials (나노물질을 이용한 이온교환막의 성능 향상)

  • Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.315-324
    • /
    • 2023
  • Ion-exchange membrane (IEM), is a key component that determines the performance of the electro-membrane processes. In this review, the latest research trends in improving the performance of IEMs used in various electro-membrane processes through modification using carbon-based and metal-based nanomaterials are investigated. The nanomaterials can be introduced into IEMs through various methods. In particular, carbon-based nanomaterials can strengthen their interaction with polymer chains by introducing additional functional groups through chemical modification. Through this, not only can the ion conductivity of IEM be improved, but also the permselectivity can be improved through the sieving effect through the layered structure. Meanwhile, metal-based nanomaterials can improve permselectivity through sieving properties using the difference in hydration radius between target ions and excluded ions within a membrane by using the property of having a layered or porous structure. In addition, depending on the characteristics of the binder used, ion conductivity can be improved through interaction between nanomaterials and binders. From this review, it can be seen that the properties of IEMs can be effectively controlled using carbon-based and metal-based nanomaterials and that research on this is important to greatly improve the performance of the electro-membrane process.