• 제목/요약/키워드: green emission

검색결과 1,026건 처리시간 0.025초

국내 에너지다소비건물의 용도별.지역별 온실가스 배출원단위분석 연구 (A Study on the Greenhouse Gas Intensity of Building Groups and Regional in Korea)

  • 이충국;서승직
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.162-169
    • /
    • 2012
  • Our country set the mid-term reduction goal of greenhouse gases up to 2020 in accordance with Bali roadmap agreed in 2007 through the negotiation with UNFCCC in 2009 and specified the proper goal as by the Basic Act on Green Growth that went into effect at April, 2010. First of all the enlargement of green building construction has been suggested as a worldwide strategy to achieve the green house gas reduction. Building area is one of most important sectors for the countermeasure of climate change agreement and the achievement of national green house gas reduction goal and the need to reduce its green house gases has been increased accordingly. The objective of the study is to examine the status and characterization of mass energy consumption local governmental buildings' green house gas emissions depending on usage (hotel, school, apartment, hospital) through the green house gas emission source unit analysis. The result indicated that the energy source unit was proportional to green house gas source unit and hotel showed the highest green house gas emission source unit per open area of construction unit, followed by hospital, apartment, and then school. In case of apartment, green house gas emission source unit per open area of construction unit decreased as year went on. Meanwhile school building showed a striking increase in the annual energy source unit.

Er 이온 주입된 GaN의 광학적 특성 (Optical Properties of Er-implanted GaN)

  • 손창식
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1101-1105
    • /
    • 2005
  • We have investigated the optical properties of Erbium (Er)-implanted GaN by photoluminescence (PL). Various doses of Er ion were implanted on GaN epilayers by ion implantation. Visible green emission lines due to inner 4f shell transitions for $Er^{3+}$ were observed from the PL spectrum of Er-implanted GaN. The emission spectrum consists of two narrow green lines at 537 and 558 nm. The green emission lines are identified as $Er^{3+}$ transitions from the $^{5}H_{11/2}$ and $^{4}S_{3/2}$ levels to the $^{4}I_{15/2}$ ground state. The stronger peaks in the case with the dose of $5{\times}10^{14}cm^{-2}$, together with the relatively higher intensity of the $Er^{3+}$ luminescence in the lower doped sample. It implies that some damage remains in the case with the dose of $1{\times}10^{16}cm^{-2}$. The peak positions of emission lines due to inner 4f shell transitions for $Er^{3+}$ do not change with increasing temperature. It indicates that $Er^{3+}$ related emission depends very little on the ambient temperature.

Eu3+와 Tb3+ 활성제 이온이 SrSnO3 형광체의 특성에 미치는 영향 (Effects of Eu3+ and Tb3+ Activator Ions on the Properties of SrSnO3 Phosphors)

  • 김정대;조신호
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.469-473
    • /
    • 2014
  • $SrSnO_3$ phosphor powders were synthesized with two different contents of activator ions $Eu^{3+}$ and $Tb^{3+}$ using the solid-state reaction method. The structural, morphological, and optical properties of the phosphors were investigated using X-ray diffractometry, field-emission scanning electron microscopy, and fluorescence spectrophotometry, respectively. All the phosphors showed a cubic structure, irrespective of the type and the content ratio of activator ions. For $Eu^{3+}$-doped $SrSnO_3$ phosphors, the intensity of the 620 nm red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ was stronger than that of the 595 nm orange emission signal due to the $^5D_0{\rightarrow}^7F_1$ transition in the range 0.01-0.05 mol of $Eu^{3+}$, but the ratio of the intensity was reversed in the range 0.10-0.20 mol of $Eu^{3+}$. The variation in the emission intensity indicates that the site symmetry of the $Eu^{3+}$ ions around the host crystal was changed from non-inversion symmetry to inversion. For the $Tb^{3+}$-doped $SrSnO_3$ phosphors under excitation at 281 nm, one strong green emission band at 550 nm and several weak bands were observed. These results suggest that the optimum red and green emission signals can be realized when the activator ion content for $Eu^{3+}$- or $Tb^{3+}$-doped $SrSnO_3$ phosphors is 0.20 mol and 0.15 mol, respectively.

토공장비조합에 따른 공사기간 및 이산화탄소 배출량의 상관성 분석 (Correlation Analysis on the Duration and CO2 Emission Following the Earth-work Equipment Combination)

  • 김병수
    • 대한토목학회논문집
    • /
    • 제31권4D호
    • /
    • pp.603-611
    • /
    • 2011
  • 1997년 온실가스 감축을 위한 교토의정서가 채택된 이후 각 국가들은 대표적인 온실가스인 이산화탄소를 줄이기 위하여 전 산업에 걸쳐 다각적인 노력을 하고 있다. 건설산업에서도 온실가스 배출량을 고려한 Passive Design 이나, LCA기준에 의한 환경영향평가와 같은 소프트웨어적 기술의 개발 그리고 설비시스템의 조정이나 친환경 자재의 개발과 같은 하드웨어적 기술의 개발과 같이 두 가지 형태의 기술이 다양한 방법으로 개발됨으로써 이산화탄소 저감을 시도하고 있다. 그러나 건설산업에서 세부공정을 고려한 이산화탄소 배출과 관련한 연구는 전무하다. 본 연구에서는 철도노반공사 중에서 이산화탄소 배출량이 가장 많은 공정인 토공사를 대상으로 장비조합에 따른 이산화탄소 배출량을 산출하여 장비조합과 이산화탄소 배출량 그리고 공사기간의 상관성을 분석하였다.

Exciplex emission in bilayer Light-emitting device

  • Liang, Yu-Jun;Zhang, Hong-Jie;Han, Sang-Do;Jung, Young-Ho;Taxak, Vinod Bala
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.762-765
    • /
    • 2002
  • The bilayer organic light-emitting diode using Al (DBM) $_3$ (DBM=Dibenzoylmethane) as an emitting material and poly (N-vinylcarbazole) (PVK) as hole-transport material, emitted bright blue-green light instead of blue light. The blue-green emission is attributed to exciplex formation at the solid interface between Al (DBM) $_3$ and the hole-transport material. The exciplex formation was evidenced by the measurement of the photoluminescence spectra and lifetimes of Al (DBM) $_3$, PVK and an equimolar amount of mixture of Al (DBM) $_3$ and PVK.

  • PDF

녹색기술을 이용하여 제작된 ZnO 나노선 (Fabrication of ZnO Nanowires by Green Technology)

  • 이근형
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.233-236
    • /
    • 2012
  • ZnO nanowires were fabricated through thermal evaporation of Zn or ZnS powder using solar energy. The Zn or ZnS powder was heated and evaporated by sunlight. The sunlight was concentrated on the Zn or ZnS powder by a converging lens and then the Zn or ZnS powder was evaporated and oxidized in air. After oxidation, ZnO nanowires were fabricated in the focal point. Strong ultraviolet emission, which corresponds to the near band-edge emission, was observed from the ZnO nanowires synthesized using Zn powder as a source material. Meanwhile, green emission, related to intrinsic defects such as oxygen vacancies, prevailed for the ZnO nanowires fabricated using ZnS powder. No catalysts were used in the fabrication of the ZnO nanowires, which suggested the ZnO nanowires were grown by a vapor-solid mechanism.

Preparation and EPR Characteristics of $ZnGa_2O_4$ : Mn Phosphor

  • 정하균;박도순;박윤창
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권12호
    • /
    • pp.1320-1325
    • /
    • 1998
  • ZnGa2O4: Mn phosphors were prepared by a new chemical process, and their photoluminescence and electron paramagnetic resonance characteristics were investigated. The chemical method showed a low temperature formation of phosphors and a rod-type shape of particles. The strong ultraviolet emission was observed in the undoped ZnGa2O4 phosphor, while strong green emission in the Mn2+-activated ZnGa2O4 phosphor. The green emission intensity of the phosphor prepared by the chemical method was much stronger than that prepared by the conventional method. This difference with preparation methods was interpreted as due to the difference in the distribution of Mn2+ in the host lattice. From EPR results, it was explained that the line intensity of the undoped ZnGa2O4 is associated with the electrical conductivity of this material and the concentration quenching of green luminescence of ZnGa2O4: Mn at higher Mn2+ concentration is attributed to the coupling by exchange interaction between Mn2+ ions.

A Study on ZnSSe : Te/ZnMgSSe DH Structure Blue and Green Light Emitting Diodes

  • Lee Hong-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권7호
    • /
    • pp.795-800
    • /
    • 2005
  • The optical properties of $ZnS_{y}Se_{1-x-y}:Te_x\;(x\;<\;0.08,\;y\∼0.11$) alloys grown by molecular beam epitaxy (MBE) have been investigated by photoluminescence (PL) and PL-excitation (PLE) spectroscopy. Good optical properties and high crystal quality were established with lattice match condition to GaAs substrate. At room temperature, emission in the visible spectrum region from blue to green was obtained by varying the Te content of the ZnSSe:Te alloy. The efficient blue and green emission were assigned to $Te_{1}$Tel and $Te_{n}$ (n$\geq$2) cluster bound excitons, respectively. Bright blue (462 nm) and green (535 nm) light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer.

ZnSSe:Te/ZnMgSSe DH 구조 청색~녹색발광다이오드의 개발 (Development of ZnSSe:Te/ZnMgSSe DH structure Blue~Green tight Emitting Diodes)

  • 이홍찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.33-41
    • /
    • 2003
  • The optical properties of $ZnS_ySe_{1-\chi-y}:Te_{\chi}(\chi<0.08,y~0.11)$ alloys grown by molecular beam epitaxy (MBE) have been investigated by photoluminescence (PL) and PL-excitation (PLE) spectroscopy. Good optical properties and high crystal quality were established with lattice match condition to GaAs substrate. At room temperature, emission in the visible spectrum region from blue to green was obtained by varying the Te content of the ZnSSe:Te alloy. The efficient blue and green emission were assigned to $Te_1 and Te_n(n\geq2)$cluster bound excitons, respectively. Bright green (535 nm) and blue (462 nm) light emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer. The turn-on voltage of 2.1 V in current-voltage characteristics is very small compared to that of commercial InGaN-based LEDs (>3.4 V), indicating the formation of a good ohmic contact due to the optimized p-ZnSe/p-ZnTe multi-quantum well (MQW) superlattice electrode layers.

글리신-질산염 연소법으로 합성된 SrAl2O4:Eu2+,Dy3+ 형광체의 발광 및 장잔광 특성 (Photoluminescence and Long-phosphorescent Characteristics of SrAl2O4:Eu2+,Dy3+ Phosphor by Glycine-nitrate Combustion Method)

  • 이영기;김정열;이유기
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.364-369
    • /
    • 2010
  • A $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor powder with stuffed tridymite structure was synthesized by glycine-nitrate combustion method. The luminescence, formation process and microstructure of the phosphor powder were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). The XRD patterns show that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was an amorphous phase. However, a crystalline $SrAl_2O_4 $ phase was formed by calcining at $1200^{\circ}C$ for 4h. From the SEM analysis, also, it was found that the as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor was in irregular porous particles of about 50 ${\mu}m$, while the calcined phosphor was aggregated in spherical particles with radius of about 0.5 ${\mu}m$. The emission spectrum of as-synthesized $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor did not appear, due to the amorphous phase. However, the emission spectrum of the calcined phosphor was observed at 520 nm (2.384eV); it showed green emission peaking, in the range of 450~650 nm. The excitation spectrum of the $SrAl_2O_4:Eu^{2+},Dy^{3+}$ phosphor exhibits a maximum peak intensity at 360 nm (3.44eV) in the range of 250~480 nm. After the removal of the pulse Xe-lamp excitation (360 nm), also, the decay time for the emission spectrum was very slow, which shows the excellent longphosphorescent property of the phosphor, although the decay time decreased exponentially.