• Title/Summary/Keyword: green disposal

Search Result 58, Processing Time 0.021 seconds

Characterization of Bacterial Community Dynamics during the Decomposition of Pig Carcasses in Simulated Soil Burial and Composting Systems

  • Ki, Bo-Min;Kim, Yu Mi;Jeon, Jun Min;Ryu, Hee Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2199-2210
    • /
    • 2017
  • Soil burial is the most widely used disposal method for infected pig carcasses, but composting has gained attention as an alternative disposal method because pig carcasses can be decomposed rapidly and safely by composting. To understand the pig carcass decomposition process in soil burial and by composting, pilot-scale test systems that simulated soil burial and composting were designed and constructed in the field. The envelope material samples were collected using special sampling devices without disturbance, and bacterial community dynamics were analyzed by high-throughput pyrosequencing for 340 days. Based on the odor gas intensity profiles, it was estimated that the active and advanced decay stages were reached earlier by composting than by soil burial. The dominant bacterial communities in the soil were aerobic and/or facultatively anaerobic gram-negative bacteria such as Pseudomonas, Gelidibacter, Mucilaginibacter, and Brevundimonas. However, the dominant bacteria in the composting system were anaerobic, thermophilic, endospore-forming, and/or halophilic gram-positive bacteria such as Pelotomaculum, Lentibacillus, Clostridium, and Caldicoprobacter. Different dominant bacteria played important roles in the decomposition of pig carcasses in the soil and compost. This study provides useful comparative date for the degradation of pig carcasses in the soil burial and composting systems.

Examination of heat resistant tensile properties and molding conditions of green composites composed of kenaf fibers and PLA resin

  • Ben, Goichi;Kihara, Yuichi;Nakamori, Keita;Aoki, Yoshio
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.361-376
    • /
    • 2007
  • Disposing of conventional fiber-reinforced polymers (FRPs) poses an environmentally challenging problem. Disposal of FRPs by combustion discharges carbon dioxide in the air because the resin of FRPs is made of fossil fuel. When they are disposed of in the ground, FRPs remain semipermanently without decomposing. In response to these problems, green composites are now being developed and are extensively studied as a material that produces a lower environmental burden. In this paper, green composites using kenaf fiber yarn bundles and PLA (poly(lactic acid)) are fabricated and their tensile properties are evaluated in the experiment. The tensile Young's modulus of all of the laminations is larger than that of PLA alone and the tensile strength of some laminations is larger than that of PLA alone. In particular, the value of UD composite of $0^{\circ$ shows double the tensile strength of PLA alone. Furthermore, the molding conditions for fabricating with a hot press are investigated and the heat resistant tensile properties of green composites are also reported.

Consumer Roles and Practical Methods for Environmental Preservation (환경보전을 위한 소비자 역할과 실천적 접근방법에 관한 고찰)

  • Shon, Sang-Hee
    • Korean Journal of Human Ecology
    • /
    • v.6 no.1
    • /
    • pp.41-53
    • /
    • 1997
  • Environmental issues are increasingly important in consumer decision-making. This paper focuses on the consumer's role in consumption process-purchase, use, and disposal, which has significant environmental consequences. And this paper discusses several approaches to motivate consumer's awareness and responsibility for the environment and further his/her lifestyle change. The Green Consumer should be able to consider the implications of his/her lifestyle choices as well as his/her purchase, use, and disposal decisions. Consumer education and various consumer movements for environment preservation should keep the goal in perspective, which is not only to motivate consumer's long-term behavior change but also to consign his/her buying power and political power to help make changes where he/she really counts.

  • PDF

Integrated Product Design Development

  • Cho, Moon-Soo;Song, Joon-Yeob
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.4
    • /
    • pp.81-92
    • /
    • 1997
  • The terminology such as ecology, environment problems, ecosystems, ecofactory, and others related to environmental problems have been recently used in manufacturing systems, since the modern industries have to consider a global ecological crisis. The indifference of recent environmental problems which may be faced now has been paid attention to all engineering areas. In this paper, manufacturing functional requirements such as disassembly, disposal, disposal, or recycling are considered in the integrated product design development, which have not been considered well in the preliminary design stage. Those functions will contribute to reduce the waste and to long the product life cycle, which also satisfies the business benefits and customer requirements. The concurrent design concepts should be applied to integrate all possible factors. Therefore, few practical concurrent engineering tools are presented in here. The objective of this paper is to develop a called green manufacturing systems for integrated product design development by concurrent design concept which can give the desirable result in product design.

  • PDF

Green Port Management Policy Directions in the Green Growth Era - The Case of Gwangyang Port in Republic of Korea - (녹색성장시대에 환경친화적 항만관리정책의 발전방향 - 광양항을 중심으로 -)

  • Jeong, Bong-Hyun
    • Journal of Korea Port Economic Association
    • /
    • v.25 no.3
    • /
    • pp.361-384
    • /
    • 2009
  • This study aims to analyse the current conditions of transport demand and its environmental problems in Gwangyang Port(GP), and to suggest crucial directions for Gwangyang Green Port(GGP) in Korea. This study consists of three main sections: concept of green growth and green port; the analysis of transport demand and environment situations in GP; policy directions for GGP. This study is mainly conducted by a literature review of related papers, an analysis of secondary data & papers, and interviews with port experts. This study presents important policy directions for successfully managing GGP in Korea as follows: modal shifts plan for green transport and logistics system in GP; energy-saving techniques in GP's berth operation; the application of environmentally friendly port operation methods in GP; construction of GP waterfront facilities; environmentally friendly disposal of maritime waste matters; establishment and implementation of port environment master plan. This study will make a big contribution to the building of green port policy and the providing of professional informations to government officials.

  • PDF

A Study on Manufacturing and Processes of the Lightweight Block Unit for Roof Greening with Bottom ash (옥상녹화용 경량유닛의 블록제조 공법 및 공정 연구)

  • Moon, Jong-Wook;Oh, Jung-Keun;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.95-100
    • /
    • 2012
  • Thermal phenomena has caused abnormal weather phenomena due to the lack of urban green spaces To solve these problems, the country of recorded a city business is actively evolving trends. but in all the land, most built-up city's green buildings unless the demolition of the composition is an impossible situation, green space in urban areas, with emphasis on composition. In this study, thermal power plants that occured in the evolution of vegetation by utilizing Bottom Ash was tried to develop a lightweight block. Bottom Ash block to take advantage of vegetation is focused create green space in urban areas Vegetation in the block was carried out manufacturing lightweight, porous, lightweight water ratio suitable for three types of blocks selected according to its kind study on the manufacturing and process. Bottom Ash from this study at the time of disposal of coal ash generated by recycling the landfill shortages, loss of landfill costs, environmental pollution and are trying to solve the same problem at the same time.

A Study on the Establish Environmental Impact of Database of the Envelope System for Green Remodeling of Apartment Housing (공동주택의 그린 리모델링을 위한 외피시스템 환경영향 DB 구축에 관한 연구)

  • Lee, Jong Geon;Tae, Sung Ho;Chae, Chang-U;Kim, Rak Hyun
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.73-79
    • /
    • 2016
  • Purpose: In order to improve the energy performance of existing buildings, so actively promoted green remodeling business. Also, improvement of the performance of envelope system of apartment housing is an absolute. The purpose of implementation of the data base and application plan of the envelope system for green remodeling of apartment housing. Method: For this study, It proposed a classification system of green remodeling envelope system constructed actual to select the applicable representative method and input material of apartment housing for green remodeling. In this study, divided into construction waste processing stage and production phase of the material for the boundary of the system, and implementation the classification system of the envelope system for applicable green remodeling. For this, established 6 environmental impact categories database. Result: As a result of various suggestions were available for case study research, alternative combinations of existing combinations than six kinds of environmental impact insulation system with superior input materials combining 96 kinds, window system, 12 kinds for determining the applicability of the established database. Depending on the account for a large proportion if compared to the detailed analysis of the environmental impact resulting from the production phase and disposal phase was analyzed that the operating management of the necessary input materials. Is considered that the economic performance and integrated energy performance required by the applicable public housing green remodeling evaluation techniques considered for future improvements insulation sheath.

Stage by stage design for primary, conventional activated sludge, SBR and MBBR units for residential wastewater treatment and reusing

  • Aziz, Shuokr Qarani;Omar, Imad Ali;Bashir, Mohammed J.K.;Mojiri, Amin
    • Advances in environmental research
    • /
    • v.9 no.4
    • /
    • pp.233-249
    • /
    • 2020
  • To date, there is no central wastewater (WW) treatment plant in Erbil city, Kurdistan region, Iraq. Therefore, raw WW disposes to the environment and sometimes it used directly for irrigation in some areas of Erbil city. Disposal of the untreated WW to the natural environment and using for irrigation it causes problems for the people and the environment. The aims of the current work were to study the characteristics, design of primary and different secondary treatment units and reusing of produced WW. Raw WW samples from Ashty city-Erbil city were collected and analyzed for twenty three quality parameters such as Total Suspended Solids (TSS), total dissolved solids, total volatile and non-volatile solids, total acidity, total alkalinity, total hardness, five-day Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), biodegradability ratio (BOD5/COD), turbidity, etc. Results revealed that some parameters such as BOD5 and TSS were exceeded the standards for disposal of WW. Design and calculations for primary and secondary treatment (biological treatment) processes were presented. Primary treatment units such as screening, grit chamber, and flow equalization tank were designed and detailed calculation were illustrated. While, Conventional Activated Sludge (CAS), Sequencing Batch Reactor (SBR) and Moving Bed Biofilm Reactors (MBBR) were applied for the biological treatment of WW. Results revealed that MBBR was the best and economic technique for the biological treatment of WW. Treated WW is suitable for reusing and there is no restriction on use for irrigation of green areas inside Ashty city campus.

Preparation and characterization of green adsorbent from waste glass and its application for the removal of heavy metals from well water

  • Rashed, M. Nageeb;Gad, A.A.;AbdEldaiem, A.M.
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.53-71
    • /
    • 2018
  • Waste glass disposal causes environmental problems in the cities. To find a suitable green environmental solution for this problem low cost adsorbent in this study was prepared from waste glass. An effective new green adsorbent was synthesized by hydrothermal treatment of waste glass (WG), followed by acidic activation of its surface by HCl (WGP). The prepared adsorbent was characterized by scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD), and BET surface measurement. The developed adsorbent was used for the removal of heavy metals (Cd, Cu, Fe, Pb and Zn) from well water. Batch experiments were conducted to test the ability of the prepared adsorbent for the removal of Cd, Cu, Fe, Pb and Zn from well water. The experiments of the heavy metals adsorption by adsorbent (WGP) were performed at different metal ion concentrations, solution pH, adsorbent dosage and contact time. The Langmuir and Freundlich adsorption isotherms and kinetic models were used to verify the adsorption performance. The results indicated high removal efficiencies (99-100%) for all the studied heavy metals at pH 7 at constant contact time of 2 h. The data obtained from adsorption isotherms of metal ions at different time fitted well to linear form of the Langmuir sorption equation, and pseudo-second-order kinetic model. Application of the resulted conditions on well water demonstrated that the modified waste glass adsorbent successfully adsorbed heavy metals (Cd, Cu, Fe, Pb and Zn) from well water.

Evaluation of Carrying Capacity and Sustainability of Jeju Island using Onishi Model (Onishi Model을 이용한 제주도 기반시설 환경용량 산정 및 지속가능성 평가)

  • Park, Jinseon;Kim, Solhee;Kim, Yooan;Hong, Sewoon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.95-106
    • /
    • 2020
  • The Onishi model is an objective indicator which can be used to evaluate the relevance of city environmental management in regard to the capacities and processing status of existing urban infrastructure. This study is to analyze the facility carrying capacity and processing status of Jeju Island, a famous tourist site in South Korea. General variables covered by the Onishi model are considered, including water supply, wastewater treatment, waste disposal, and air pollution. Furthermore, the facility carrying capacities for transportation, such as airports and ports, as well as accommodations are assessed as variables pertinent to the characteristics of Jeju island. With the annual number of tourists exceeding that of residents on the island, more facilities for sewage treatment and waste disposal are required. Furthermore, transportation and accommodations used by tourists have already exceeded their capacity. For the future sustainability of Jeju Island, a plan will be needed for adjusting the volume of tourists based on the capacity of each relevant facility.