• Title/Summary/Keyword: green cement

Search Result 108, Processing Time 0.024 seconds

Green Technology in Concrete Industry : Geopolymer Concrete

  • Nguyen, Khoa Tan;Le, Tuan Anh;Ahn, Namshik
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.115-116
    • /
    • 2011
  • TNowadays, the global warming is the most serious problem in the world and the cement industry is one of the factors which are responsible for it. Therefore, the development of new binders with enhanced environment and durability performance is needed. In this regard, the geopolymer technology is one of the breakthrough developments as an alternative to the portland cement. This paper shows some points of view on the development of geopolymers by reviewing previous researches including historical background, constituents of geopolymers, process of geopolymerization and several applications of geopolymer. Hence, the author proposes two research trends which are finding the best combination between the source materials and alkali liquid then, evaluating the corrosion for the metal bars.

  • PDF

A Study on the Hardening Characteristics of Alumino-Silicate Inorganic Binder Using Red-Mud according to Curing Temperature (레드머드를 활용한 알루미노 규산염계 무기결합재의 양생온도별 경화특성에 관한 연구)

  • Lee, Yeong-Won;Kang, Suk-Pyo;Lee, Jun;Kim, Jae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.259-262
    • /
    • 2012
  • Recently, as the national policy of green growth is promoted, construction field also makes an effort to reduce CO2 gas released when producing cement continuously. In other words, as the method solving environmental pollution and resources exhaustion, lots of mineral material compounds such as blast furnace slag powder which is industrial by-product, fly ash, red mud, etc. are examined to bo used as the substitute good of cement Therefore this study is to investigate the hardening characteristics of alumino-silicate inorganic binder using red-mud used as a accelerator of industrial by-product such as fly ash and blast furnace slag powder according to curing temperature. As a result, it is effective to use red-mud as the accelerator of inorganic binder with other additory accelerators.

  • PDF

Strength Characteristics of Rammed Earth Using Hwangtoh Binder

  • Hwang, Hey-Zoo;Yang, Jun-Hyuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • There has recently been a great deal of research into the appropriate building materials for eco-friendly construction. In the field of earth architecture, there have been walls made of pure earth or with rammed earth including a small amount of cement. The purpose of the study is to investigate the possibility increasing compressive strength through a more eco-friendly composition by using Hwangtoh binder rather than cement to increase the strength performance of rammed earth. It was found that the more the ratio of binder was increased, the more the strength was increased, but enhancement did not increase noticeably in the lower part that did not compact completely, and proper height to pour earth is 200 mm. When stone dust was added, compressive strength was lower than when adding fine aggregate and coarse aggregate, but a finer surface texture was provided.

Strength improvement and micro analysis of limestone-slag cement : role of aluminum sulfate (석회석슬래그 시멘트의 강도향상 및 미세분석 : 황산알루미늄의 역할)

  • Wang, Yi-Sheng;Wang, Xiao-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.161-162
    • /
    • 2023
  • Limestone slag cement is a green and sustainable building material with huge market potential. However, its shortcoming of low early compressive strength needs to be improved. A method of using aluminum sulfate to improve the early strength of ternary mixed mortar was proposed, and its effect and optimal dosage were tested. Macroscopic properties such as mechanical properties and surface electrical resistivity were measured at different dosages (0%, 1%, 2%, 3%). The microstructure and products of the mixtures were tested in detail, including by scanning electron microscopy, thermogravimetric analysis, and X-ray diffraction. The results show aluminum sulfate enhances mechanical properties and significantly increases surface electrical resistivity. The 1% and 2% doses had no adverse effects on the 28-day mechanical properties, while the 3% dose reduced the 28-day strength. Considering the changes in mechanical properties and surface electrical resistivity, 1% aluminum sulfate is the optimal dosage.

  • PDF

A Study for Physical Properties of ALC using different Quartzite (규석 종류에 따른 ALC 물성 연구)

  • Chu, Yong-Sik;Seo, Sung-Kwan;Im, Du-Hyuk;Song, Hun;Lee, Jong-Kyu;Lee, Seung-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.89-94
    • /
    • 2012
  • ALC was fabricated using cement, lime and quartzite by hydrothermal reaction. The kind of quartzite was reviewed for ALC properties and returned slurry was recycled in this study. Munkyung and Kumpyung quartzite was used and quartzite powder was experimented. The major mineral phase of Munkyung quartzite was quartz and muscovite crystal but that of Kumpyung was quartz. It was certain that crystallinity of Kumpyung quartzite was superior to Munkyung quartzite. Compressive strength and A-number of ALC with Kumpyung quartzite was higher than that of ALC with Munkyung quartzite under similar specific gravity. These results was resulted from major mineral phase, crystallinity and minor components of quartzite.

  • PDF

Applications of Sugarcane by-products to mitigate climate change in Ethiopia

  • Habte, Lulit;Mulatu, Dure;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.36-40
    • /
    • 2018
  • Climate change is one of the major issues in both the developed and developing world. Greenhouse gas (GHG) emission is one of the implications for climate change. It is increasing rapidly. Although the emission is much less when compared to the rest of the world, Ethiopia has also faced this global issue. The major source for GHG emission in Ethiopia is agriculture. Therefore, the agriculture sector has to be given more attention in Ethiopia. To overcome the problem, Climate-Resilient Green Economy (CRGE) strategy has been initiated. One way of executing this target is to create a sustainable and environmentally friendly pathway to use agricultural byproducts. Sugarcane is one of the major plants in Ethiopia. Its byproducts are bagasse, molasses, and press mud. Since it is a waste product, it is economical and creates a sustainable and green environment by reducing GHG emissions. Sugarcane byproducts have versatile applications like as fuel, as cement replacing material, as a mitigation for expansive soils, as biosorbent for the treatment of water and wastewater and also as a wood material. However, Ethiopia has not used this byproduct massively as it is readily available. This paper reviews the possible applications of sugarcane byproducts to mitigate climate change.

Colors and Crystals of ALC Surface with Green Body's Staying Time (성형체의 대기시간에 따른 ALC 표면 색상과 결정특성)

  • Chu, Yong Sik;Seo, Sung Kwan;Park, Soo Hyun;Song, Hun;Lee, Jong Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.535-541
    • /
    • 2012
  • ALC was fabricated using cement, lime, quartzite and a foaming agent via a hydrothermal reaction. ALC has various hydrothermal reaction products and many pores. The properties and colors of ALC surfaces were changed by various factors during ALC fabrication process. This study tested various staying times to analyze these phenomena. It was found that the staying time of green body influenced the properties of hydrothermal products and color of ALC surface. The longer staying time of green body, the lower tobermorite content and cumulative loss weight. An increase in holding time changed color and decreased whiteness of ALC surface. The relationship between whiteness and cumulative loss weight was very high (Coefficient, r = 0.95). It was surmised that tobermorite content was an important factor for enhancement of whiteness However, ettringite and quartzite did not contribute to whiteness.

Impacts of Climate Change on Water Crisis and Formation of Green Algal Blooms in Vietnam

  • Thriveni, Thenepalli;Lee, Namju;Nam, Gnu;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • Global warming affects water supply and water resources throughout the world. In many countries, climate change affects significantly on the fresh water resources. Vietnam is exposed mainly, to landslides and floods triggered by tropical storms and monsoon rains, although storm surge, whirlwind, river bank and coastal line erosion, hail rain. In addition to the prevalent drought, there are many major water challenges, including water availability, stress, scarcity and accessibility, because of poor resource management. Fast growth of urbanization, industrialization and population growth, agricultural activities and climate change cause heavy pressure on water quality. Both domestic and industrial wastewater, as well as storm water shares the same drainage. The common facilities for wastewater treatment are not available. Therefore, wastewater is treated only superficially and then discharged directly into rivers and lakes causing serious pollution of surface water environment. In this paper, we reported the severe water crisis and massive green algal blooms formation in Vietnam rivers and lakes. This is the biggest evidence of climate change variations in Vietnam.

Effect of Calcium Sulfate Dihydrate (Gypsum) on the Fundamental Properties of Slag-based Mortar (이수석고가 고로슬래그 미분말 베이스 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Baek, Byung Hoon;Han, Cheon Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.252-258
    • /
    • 2014
  • With the vision of 'a low carbon green develop' various industrial by-products were used as replacement of cement, in order to reduce $CO_2$ emissions from the manufacturing process of cement. Blast furnace slag is one of the industrial by-products. Due to the similar chemical compositions to ordinary Portland cement, blast furnace slag have been widely used in concrete with minimum side effects. Hence, in recent years, alkali activated slag-based composites are extensively studied by many researchers. However, the alkali activator can cause a number of problems in practice. Therefore, in this study, an alternative way of activating the slag was investigated. To activate the slag without using an alkali activator, calcium sulfate dihydrate was chosen and mixed with natural recycled fine aggregate. Fundamental properties of the slag-based mortar were tested to evaluate the effect of calcium sulfate dihydrate.

The Particle Size distribution of Cement Binder and Rheological Properties of Paste (시멘트 혼합재의 입도분포와 페이스트 유동특성)

  • Yoo, Dong-Woo;Choi, Hyun-Kook;Lee, Seung-Heun;Lee, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.103-111
    • /
    • 2011
  • This study examined rheological properties of blast furnace slag and ash paste that are widely used as cement concrete for mineral admixture in current. In that way rheological properties of the paste of mineral admixture only was examined. The result of this study were as follow: In order to analyze that the rheological properties of the mineral admixture only, fine particles were produced with grinding machine to 3 particle sizes. These powders in general from the result of comparison with and analysis of rheological properties and the coefficient n and De values. The result that ash powder was higher in plastic viscosity and yield stress than Slag powder, and with the same n value, ash powder showed higher plastic viscosity and yield stress than Slag powder. But Slag powder in particle size distribution showed a sensitive tendency on changing in rheological properties.

  • PDF