• Title/Summary/Keyword: green and fermented tea

Search Result 77, Processing Time 0.034 seconds

A Study of Effects of Fermented Green Tea Extract-based Treatment on Hair (발효녹차액을 이용한 모발의 트리트먼트 효과)

  • Park, Kwi Hee;Lim, Sun Nye
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.353-362
    • /
    • 2014
  • This study attempted to determine the effects of fermented green tea extracts on hair by using them in a perm. For this, hair is bleached, and then the fermented green tea extracts and water were supplied to the hair using a mist sprayer. Then the hair was permed, and hair damage was tested. Regarding hair moisture levels and wave formation, specifically, the morphological changes of hair were investigated with the Scanning Electron Microscope(SEM). The study results found the following. In terms of wave formation, the fermented green tea extract-based perm was much better than the general perm. In addition, hair bleaching was more serious in the latter. According to analysis on hair moisture using SEM, hair damage was more prevalent in the general perm as well. Therefore, it was confirmed that green tea extract-based perms cause less damage to the cuticle. In other words, the potential of fermented green tea extracts as a hair cosmetics material was discovered. Furthermore, it appears that the study results contribute to the development of low-irritating scalp and hair care products using the anti-inflammatory and antimicrobial properties of the fermented green tea extracts.

Quality Properties of Loaf Bread Added with Fermented Tea Powder (발효차 가루를 첨가한 식빵의 품질특성)

  • Kim, Jung-Ran;Choi, Ok-Ja;Shim, Ki-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.6
    • /
    • pp.869-874
    • /
    • 2005
  • The purpose of this study was to determine the qualities of loaf breads added with green tea powder, minimum fermented tea powder (fermented for 10 hrs), medium fermented tea powder (fermented for 17 hrs), and black tea powder (fermented for 24 hrs). The moisture content of loaf bread added with green tea and three types of fermented tea was $36.02\~36.44\%$ and was similar to the control group of $36.98\%$. The content of crude protein and ash of loaf bread added with green tea powder and fermented tea was higher than that of control group. The water holding capacity of loaf bread added with green tea powder was the highest and was followed by the fermented tea added group and the control group. The volume and specific volume of loaf bread were high in tile order of the control group, the fermented tea added group, the green tea added group. The lightness of loaf bread got lower, while the redness and the yellowness of the bread 9ot higher as loaf bread was added with more fermented tea. The hardness of loaf bread get higher, but the cohesiveness got lower as loaf bread was added with the more fermented tea. The gumminess and chewiness of loaf bread added with black tea powder were the highest. The result of sensory evaluation of the loaf bread showed that the preference of the color was tBle highest in the control group, while the preference of the flavor and the taste was the highest in the green tea group and the minimum fermented tea group. The preference of overall acceptability of loaf bread was the highest in the minimum fermented tea group.

Changes of Antioxidative Components and Activity of Fermented Tea during Fermentation Period (미생물을 이용한 후발효차의 발효기간별 항산화 성분 및 활성의 변화)

  • Kim, Yong-Shik;Jo, Cheor-Un;Choi, Goo-Hee;Lee, Kyung-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1073-1078
    • /
    • 2011
  • Changes of antioxidative components and activity of fermented tea manufactured by Bacillus subtilis, Saccharomyces cerevisiae, and Lactobacillus bulgaricus were evaluated during the fermentation period. The ascorbic acid content in the fermented tea was relatively lower (43.62~62.84 mg%) than that of green tea (66.74 mg%) during the entire fermentation period. The tea fermented by L. bulgaricus, which had the least contact with air, showed less change in ascorbic acid content. The polyphenol content of green tea was 14.88%, whereas that of fermented tea was 11.54~14.12% and it decreased during the fermentation period. The amount of flavonoids in green tea was 7.78 mg%, whereas that of fermented tea was 4.33~7.88 mg%. DPPH radical scavenging activity and ABTS reducing activity of green tea were 87.47% and 203.22 AEAC mg% (ascorbic acid equivalent antioxidant capacity), respectively, whereas those of fermented tea were lower than green tea. Results indicated that the antioxidative components and activity of fermented tea were lower than those of green tea during the fermentation period. But, when the sensory and hygienic quality are considered, fermented tea can be one of the higher quality tea products on the market.

Antimicrobial Activity of Korean Wild Tea Extract According to the Degree of Fermentation (발효정도에 따른 국내산 야생차 추출물의 항균활성)

  • Choi, Ok-Ja;Rhee, Haeng-Jae;Choi, Kyeong-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.148-157
    • /
    • 2005
  • This study was investigated to determine antimicrobial activity of the water and ethanol extracts of Korean wild green tea, semi-fermented tea, and fermented tea. Antimicrobial activity was examined against 8 kinds of several microorganisms. The minimum inhibitory concentration (MIC) of the water and ethanol extracts of green tea showed the most active antimicrobial activity against B. subtilis 0.2 mg/mL in Gram positive bacteria and P. fluorescens 0.3∼0.5 mg/mL in Gram negative bacteria. But the extracts did not show antimicrobial activity against lactic acid bacteria and yeast at the level of less than 1 mg/mL. Antimicrobial activity got lower as tea got more fermented. Antimicrobial activity of ethanol extracts from green tea, semifermented tea, and fermented tea was stronger than that of water extracts. Antimicrobial activity of the water and ethanol extracts of green tea, semi-fermented tea, and fermented tea was not destroyed at 50∼121$^{\circ}C$, and pH 3∼11, which proved to be very stable when given over heat, acid & alkali treatment. The ethanol extract of green tea, semi-fermented tea, and fermented tea was fractionated in the order of hexane, diethyl ether, ethyl acetate and water fraction. The highest antimicrobial activity was found in the water fraction, but not found in hexane fraction, while antimicrobial activity of fermented tea was not found in ether fraction.

Studies on the Free and Bound Aroma Compounds in Green and Fermented Teas (녹차와 후발효차의 유리형 및 결합형 향기성분에 대한 연구)

  • Lee, Hye-Jin;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.407-412
    • /
    • 2011
  • Free and bound aroma compounds in green and fermented teas treated with microbial-fermentation were analyzed using headspace-solid phase microextraction gas chromatography (GC) and GC-mass spectrometry. Aldehydes and ketones in green tea decreased during microbial fermentation, whereas linalool and geraniol increased in the fermented tea. After enzyme treatment, (Z)-3-hexen-1-ol increased significantly following enzymatic hydrolysis of both green and fermented teas. In addition, benzaldehyde, 3-hexenyl acetate, and geraniol also increased in green tea with enzyme treatment. Bound aroma compounds in the green and fermented teas increased at different levels of added enzyme. We demonstrated the enhancement of both green and fermented teas by enzyme treatment, which can lead to improvement in the flavor qualities of green and fermented teas.

Inhibitin of Xanthine Oxidase by Tea Extracts from Green Tea, Oolong Tea and Black Tea (녹차, 오룡차 및 홍차 추출물의 Xanthine Oxidase 억제작용)

  • 김선봉;여생규;박영범;김인수;박영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.1
    • /
    • pp.154-159
    • /
    • 1995
  • Inhibition of xanthine oxidase by tea extracts obtained from non-fermented tea(steamed green tea and roasted green tea), semi-fermented tea(oolong tea) and fermented tea(black tea) were investigated. The crude catechin fraciton had a hgher inhibitory effect against xanthine oxidase, and the effect was increased with the addition of tea extracts. Their inhibitory effect were hardly influenced until extracted three times with hot water. According to the investigation of catechins in the crude catechin fraction obtained from tea extracts, (-)-epicatechin-(EC), (-)-epicatechin gallate(ECg). (-)-epigallocatechin(EGC) and (-)-epigallocatechin gallate(EGCg) were 80.1$\mu\textrm{g}$/mg 113.5$\mu\textrm{g}$ /mg, 186.3$\mu\textrm{g}$/mg and 367.7$\mu\textrm{g}$/mg in steamed green tea, and 75.6$\mu\textrm{g}$/mg, 114.7$\mu\textrm{g}$/mg, 193.7 $\mu\textrm{g}$/mg and 381.9$\mu\textrm{g}$/mg in roasted green tea, and 69.4$\mu\textrm{g}$/mg, 110.0$\mu\textrm{g}$/mg, 127.1$\mu\textrm{g}$.mg and 464.9$\mu\textrm{g}$/mg in oolong tea, and 78.1$\mu\textrm{g}$/mg, 171.8$\mu\textrm{g}$/mg, 80.7$\mu\textrm{g}$/mg and 51.4$\mu\textrm{g}$/mg in black tea, respectively. Order of the content of these catechins was (-)-EGCg>(-)-EGC>(-)-ECg>(-)-EC in steamed green tea, roasted green tea and oolong tea, and was (-)-ECg>(-)-EGC>(-)-EC>(-)-EGCg in black tea. Also the concentration of catechins was hardly influeced until extracted three times. The inhibition ratio of xanthine oxidase by autherntic catechins was hardly influenced until extracted three times. The inhibition ratio of xanthine oxidase by authentic catechins was 94.9% and 87.6% by addition of 5.0$\mu\textrm{g}$/ml of (-)-EGCg and (-)-ECg, respectively. the inhibitors of xanthine oxidase were supposed to be due to (-)-ECg and (-)-EGCg in tea polyphenol compounds.

  • PDF

A Study on the Physicochemical Properties of Korean Teas according to Degree of Fermentation (국내산 발효차의 이화학적 성분에 관한 연구)

  • Chung Young-Hee;Shin Mee-Kyung
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.1
    • /
    • pp.94-101
    • /
    • 2005
  • The present study was conducted to know the physicochemical properties of Korean tea according to degree of fermention. The moisture content of green tea, blue tea, yellow tea and black tea was 2.02∼2.04%. The content of total nitrogen was 3.78 % in green tea and 3.49∼4.03% in fermented tea. The content of the mineral was highest in Ca, Mg. The content of vitamin C was 670.62 mg in green tea and 169.7∼85.03 mg in fermented tea. The content of vitamin C were increased as tea was more fermented. The composition of vitamin E and β-carotene was green tea> blue tea> yellow tea> black tea. The content of the rutin was 0.12 % in green tea and 1.37% in black tea. The content of rutin was increased with fermentation. The content of total amino acid of green tea was 2270.9 mg. The content of main amino acid of Glu, Asp, and Leu was 342.01 mg, 165.32 mg, and 161.69 mg and the hightst content of Glu. The content of total amino acid of black tea was 2,219.08 mg. Total amino acid content of fermented tea increased in the order of black tea> blue tea> yellow tea, and among the tea, the content of black tea was the highest in the fermented tea. The content of caffeine was 1.17% in green tea and 1.05∼1.32% fermented tea. These results were nothing in the content of caffeine during the fermentation. The content of theanine was 0.95% in green tea and 0.73∼1.42% in fermented tea. The content of total catechin was highest in green tea, and decreased sharply as tea was more fermented. Flavonoid content of 1.05% in green tea. DPPH radical scavenge activities of the teas 4.73∼19.5% mg.

Antioxidant Activity of Korean Green and Fermented Tea Extracts (국내산 녹차 및 후발효차 추출물의 항산화 효과)

  • Shon Mi-Yae;Kim Sung-Hee;Nam Sang-Hae;Park Seok-Kyu;Sung Nak-Ju
    • Journal of Life Science
    • /
    • v.14 no.6 s.67
    • /
    • pp.920-924
    • /
    • 2004
  • The beneficial effects of green and fermented tea are generally attributed to some antioxidant activities including superoxide dismutase (SOD)-like ability and scavenging activity originated from their phenolic compounds and flavonoids. Content of total flavonoid of green tea $(413.3\;{\mu}g/g)$ was similar to those of fermented tea $(405.7\;{\mu}g/g)$. Content of total phenol of green tea $(46.8\;{\mu}g/g)$ was higher than those of fermented tea $(23.5\;{\mu}g/g)$. Major catechin compounds of hot water extract in green tea was EGCG, including EGC, Gc, catechin and catechol. EGCG was not detected .in fermented tea. SOD-like ability was increased in proportional to added concentration of hot water extract. The scavenging activities of hydroxyl radical at $3000\;{\mu}g/ml$ of green and fermented teas were found up to $60\%$. Hot water extract of green tea was more effective in scavenging activity than that of fermented tea.

Characterization of Kombucha Beverages Fermented with Various Teas and Tea Fungus

  • Lee, Sam-Pin;Kim, Chan-Shick
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.3
    • /
    • pp.165-169
    • /
    • 2000
  • Kombucha beverages were made from sweetened tea by Oriental, European and Tibetan tea fungus starters. The hot water extracts o green tea, black tea, Gugija and Omija were mixed with white and/or brown sugar, and were fermented under a static culture at 3$0^{\circ}C$. Titrable acidity, pH, color and cellulose production in kombucha beverages were evaluated. All tea fungus starters showed a higher acid production in green/black tea extracts rather than Gugija and Omija extracts. In green/black tea extracts Oriental tea fungus produced a kombucha beverage with a higher titrable acidity and lower pH than those of European and Tibetan tea fungus starters. By the static fermentation of green/black tea extract for 18 days, Oriental, Tibetan and European tea fungus starters produced cellulose pellicles of 0.43g, 0.16g, and 0.19 g (dry weight) on the top in the culture, respectively. As a mother starter, the cellulose pellicle was more efficient in acid production compared with tea fungus broth. Oriental/Tibetan mixed tea fungus showed the best acid production in the green/black tea extract supplemented with brown sugar.

  • PDF

Antioxidant activity of Green Tea Fermented with Monascus pilosus

  • Lee, Ye-Kyung;Lee, Sang-Il;Kim, Jeong-Sook;Yang, Seung-Hwan;Lee, In-Ae;Kim, Soon-Dong;Suh, Joo-Won
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • Green tea leaves were fermented for 15 and 30 days with Monascus pilosus which is known to produce functional statins (TMs), and the content of various biochemical constituents such as total polyphenol (TP), total flavonoid (TF), theaflavin, and thearubigin were analyzed and compared with that of non-fermented green tea (GT) and Pu-erh Chinese post-fermented tea (PU). In addition to the electron donating ability (EDA), ferric iron reducing power (FIRP), xanthine oxidase (XO) inhibitory activity, superoxide dismutase (SOD)-like activity, iron chelating activity (ICA) and hydrogen peroxide contents were also measured and compared with that of GT and PU. Content of TP and TF in the water and ethanol extracts in TMs were lower than those in GT and PU. Theaflavin and thearubigin contents of water and ethanol extracts in TMs were higher than those of GT. And, these components were increased depending on the period of fermentation. While, EDA and FIRP of TMs were lower than those of GT, XO inhibitory activity of TMs was higher than non-fermented tea. While, ICA of TMs was slightly higher than GT and PU, the content of hydrogen peroxide in TMs was markedly lower than GT. This results suggested that the green tea fermented by M. pilosus was valuable for oxidative stress-induced diseases by decreasing hydrogen peroxide, and forming theaflavins and thearubigins with functionality of genus Monascus.